85 research outputs found

    Fast fluorescence microscopy for imaging the dynamics of embryonic development

    Get PDF
    Live imaging has gained a pivotal role in developmental biology since it increasingly allows real-time observation of cell behavior in intact organisms. Microscopes that can capture the dynamics of ever-faster biological events, fluorescent markers optimal for in vivo imaging, and, finally, adapted reconstruction and analysis programs to complete data flow all contribute to this success. Focusing on temporal resolution, we discuss how fast imaging can be achieved with minimal prejudice to spatial resolution, photon count, or to reliably and automatically analyze images. In particular, we show how integrated approaches to imaging that combine bright fluorescent probes, fast microscopes, and custom post-processing techniques can address the kinetics of biological systems at multiple scales. Finally, we discuss remaining challenges and opportunities for further advances in this field

    Advanced optical imaging in living embryos

    Get PDF
    Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis

    Dual proteotoxic stress accelerates liver injury via activation of p62-Nrf2

    Get PDF
    Protein accumulation is the hallmark of various neuronal, muscular, and other human disorders. It is also often seen in the liver as a major protein-secretory organ. For example, aggregation of mutated alpha1-antitrypsin (AAT), referred to as PiZ, is a characteristic feature of AAT deficiency, whereas retention of hepatitis B surface protein (HBs) is found in chronic hepatitis B (CHB) infection. We investigated the interaction of both proteotoxic stresses in humans and mice. Animals overexpressing both PiZ and HBs (HBs-PiZ mice) had greater liver injury, steatosis, and fibrosis. Later they exhibited higher hepatocellular carcinoma load and a more aggressive tumor subtype. Although PiZ and HBs displayed differing solubility properties and distinct distribution patterns, HBs-PiZ animals manifested retention of AAT/HBs in the degradatory pathway and a marked accumulation of the autophagy adaptor p62. Isolation of p62-containing particles revealed retained HBs/AAT and the lipophagy adapter perilipin-2. p62 build-up led to activation of the p62–Nrf2 axis and emergence of reactive oxygen species. Our results demonstrate that the simultaneous presence of two prevalent proteotoxic stresses promotes the development of liver injury due to protein retention and activation of the p62–Nrf2 axis. In humans, the PiZ variant was over-represented in CHB patients with advanced liver fibrosis (unadjusted odds ratio = 9.92 [1.15–85.39]). Current siRNA approaches targeting HBs/AAT should be considered for these individuals. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland

    Molecular Predictors of Immunophenotypic Measurable Residual Disease Clearance in Acute Myeloid Leukemia

    Get PDF
    Measurable residual disease (MRD) is a powerful prognostic factor in acute myeloid leukemia (AML). However, pre-treatment molecular predictors of immunophenotypic MRD clearance remain unclear. We analyzed a dataset of 211 patients with pre-treatment next-generation sequencing who received induction chemotherapy and had MRD assessed by serial immunophenotypic monitoring after induction, subsequent therapy, and allogeneic stem cell transplant (allo-SCT). Induction chemotherapy led to MRD- remission, MRD+ remission, and persistent disease in 35%, 27%, and 38% of patients, respectively. With subsequent therapy, 34% of patients with MRD+ and 26% of patients with persistent disease converted to MRD-. Mutations in CEBPA, NRAS, KRAS, and NPM1 predicted high rates of MRD- remission, while mutations in TP53, SF3B1, ASXL1, and RUNX1 and karyotypic abnormalities including inv (3), monosomy 5 or 7 predicted low rates of MRD- remission. Patients with fewer individual clones were more likely to achieve MRD- remission. Among 132 patients who underwent allo-SCT, outcomes were favorable whether patients achieved early MRD- after induction or later MRD- after subsequent therapy prior to allo-SCT. As MRD conversion with chemotherapy prior to allo-SCT is rarely achieved in patients with specific baseline mutational patterns and high clone numbers, upfront inclusion of these patients into clinical trials should be considered

    Histone H2AX stabilizes broken DNA strands to suppress chromosome breaks and translocations during V(D)J recombination

    Get PDF
    The H2AX core histone variant is phosphorylated in chromatin around DNA double strand breaks (DSBs) and functions through unknown mechanisms to suppress antigen receptor locus translocations during V(D)J recombination. Formation of chromosomal coding joins and suppression of translocations involves the ataxia telangiectasia mutated and DNA-dependent protein kinase catalytic subunit serine/threonine kinases, each of which phosphorylates H2AX along cleaved antigen receptor loci. Using Abelson transformed pre–B cell lines, we find that H2AX is not required for coding join formation within chromosomal V(D)J recombination substrates. Yet we show that H2AX is phosphorylated along cleaved Igκ DNA strands and prevents their separation in G1 phase cells and their progression into chromosome breaks and translocations after cellular proliferation. We also show that H2AX prevents chromosome breaks emanating from unrepaired RAG endonuclease-generated TCR-α/δ locus coding ends in primary thymocytes. Our data indicate that histone H2AX suppresses translocations during V(D)J recombination by creating chromatin modifications that stabilize disrupted antigen receptor locus DNA strands to prevent their irreversible dissociation. We propose that such H2AX-dependent mechanisms could function at additional chromosomal locations to facilitate the joining of DNA ends generated by other types of DSBs

    Special considerations in the management of adult patients with acute leukaemias and myeloid neoplasms in the COVID-19 era: recommendations from a panel of international experts

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 is a global public health crisis. Multiple observations indicate poorer post-infection outcomes for patients with cancer than for the general population. Herein, we highlight the challenges in caring for patients with acute leukaemias and myeloid neoplasms amid the COVID-19 pandemic. We summarise key changes related to service allocation, clinical and supportive care, clinical trial participation, and ethical considerations regarding the use of lifesaving measures for these patients. We recognise that these recommendations might be more applicable to high-income countries and might not be generalisable because of regional differences in health-care infrastructure, individual circumstances, and a complex and highly fluid health-care environment. Despite these limitations, we aim to provide a general framework for the care of patients with acute leukaemias and myeloid neoplasms during the COVID-19 pandemic on the basis of recommendations from international experts

    The 4D nucleome project

    Get PDF
    corecore