754 research outputs found

    Orbital clustering of distant Kuiper Belt Objects by hypothetical Planet 9. Secular or resonant ?

    Full text link
    Statistical analysis of the orbits of distant Kuiper Belt Objects (KBOs) have led to suggest that an additional planet should reside in the Solar System. According to recent models, the secular action of this body should cause orbital alignment of the KBOs. It was recently claimed that the KBOs concerned by this dynamics are presumably trapped in mean motion resonances with the suspected planet. I reinvestigate here the secular model underlying this idea. The original analysis was done expanding and truncating the secular Hamiltonian. I show that this is inappropriate here, as the series expansion is not convergent. I present a study based on numerical computation of the Hamiltonian with no expansion. I show in phase-space diagrams the existence of apsidally anti-aligned, high eccentricity libration islands that were not present in the original modelling, but that match numerical simulations. These island were claimed to correspond to bodies trapped in mean-motion resonances with the hypothetical planet, and match the characteristics of the distant KBOs observed. My main result is that regular secular dynamics can account for the anti-aligned particles itself as well as mean-motion resonances. I also perform a semi-analytical study of resonant motion and show that some resonance are actually capable of producing the same libration islands. I discuss then the relative importance of both mechanisms.Comment: Accepted in Astronomy & Astrophysics letter

    Stability of planets in triple star systems

    Full text link
    Context: Numerous theoretical studies of the stellar dynamics of triple systems have been carried out, but fewer purely empirical studies that have addressed planetary orbits within these systems. Most of these empirical studies have been for coplanar orbits and with a limited number of orbital parameters. Aims: Our objective is to provide a more generalized empirical mapping of the regions of planetary stability in triples by considering both prograde and retrograde motion of planets and the outer star; investigating highly inclined orbits of the outer star; extending the parameters used to all relevant orbital elements of the triple's stars and expanding these elements and mass ratios to wider ranges that will accommodate recent and possibly future observational discoveries. Methods: Using N-body simulations, we integrated numerically the various four-body configurations over the parameter space, using a symplectic integrator designed specifically for the integration of hierarchical multiple stellar systems. The triples were then reduced to binaries and the integrations repeated to highlight the differences between these two types of system. Results: This established the regions of secular stability and resulted in 24 semi-empirical models describing the stability bounds for planets in each type of triple orbital configuration. The results were then compared with the observational extremes discovered to date to identify regions that may contain undiscovered planets.Comment: 12 pages, 8 figures, 14 tables. Accepted for publication in Astronomy & Astrophysic

    The Orbit of GG Tau A

    Full text link
    We present a study of the orbit of the pre-main-sequence binary system GG Tau A and its relation to its circumbinary disk, in order to find an explanation for the sharp inner edge of the disk. Three new relative astrometric positions of the binary were obtained with NACO at the VLT. We combine these with data from the literature and fit orbit models to the dataset. We find that an orbit coplanar with the disk and compatible with the astrometric data is too small to explain the inner gap of the disk. On the other hand, orbits large enough to cause the gap are tilted with respect to the disk. If the disk gap is indeed caused by the stellar companion, then the most likely explanation is a combination of underestimated astrometric errors and a misalignment between the planes of the disk and the orbit.Comment: 5 pages, 6 figures, accepted by Astronomy and Astrophysics, new version contains changes suggested by language edito

    Investigating the flyby scenario for the HD 141569 system

    Get PDF
    HD 141569, a triple star system, has been intensively observed and studied for its massive debris disk. It was rather regarded as a gravitationally bound triple system but recent measurements of the HD 141569A radial velocity seem to invalidate this hypothesis. The flyby scenario has therefore to be investigated to test its compatibility with the observations. We present a study of the flyby scenario for the HD141569 system, by considering 3 variants: a sole flyby, a flyby associated with one planet and a flyby with two planets. We use analytical calculations and perform N-body numerical simulations of the flyby encounter. The binary orbit is found to be almost fixed by the observational constraint on a edge-on plane with respect to the observers. If the binary has had an influence on the disk structure, it should have a passing time at the periapsis between 5000 and 8000 years ago and a distance at periapsis between 600 and 900 AU. The best scenario for reproducing the disk morphology is a flyby with only 1 planet. For a 2 Mj (resp. 8 Mj) planet, its eccentricity must be around 0.2 (resp. below 0.1). In the two cases, its apoapsis is about 130 AU. Although the global disk shape is reasonably well reproduced, some features cannot be explain by the present model and the likehood of the flyby event remains an issue. Dynamically speaking, HD 141569 is still a puzzling system

    Interview with Carl Beust

    Get PDF
    This transcript is part of a collection of oral history interviews conducted with people who knew and interacted with Orville Wright, Wilbur Wright and/or Charles F. Kettering. In this interview, the subject discusses Charles F. Kettering, the electric cash register, the automobile self-starter, Col. Edward A. Deeds, and the O.K. Charge Phone for a department store credit system

    Dust Production from collisions in extrasolar planetary systems The inner Beta-Pictoris disc

    Get PDF
    Dust particles observed in extrasolar planetary discs originate from undetectable km-sized bodies but this valuable information remains uninteresting if the theoretical link between grains and planetesimals is not properly known. We outline in this paper a numerical approach we developed in order to address this issue for the case of dust producing collisional cascades. The model is based on a particle-in-a-box method. We follow the size distribution of particles over eight orders of magnitude in radius taking into account fragmentation and cratering according to different prescriptions. A very particular attention is paid to the smallest particles, close to the radiation pressure induced cut-off size RprR_{pr}, which are placed on highly eccentric orbits by the stellar radiation pressure....(abstract continued in the uploaded paper)Comment: A&A accepted (in press

    On the observability of resonant structures in planetesimal disks due to planetary migration

    Full text link
    We present a thorough study of the impact of a migrating planet on a planetesimal disk, by exploring a broad range of masses and eccentricities for the planet. We discuss the sensitivity of the structures generated in debris disks to the basic planet parameters. We perform many N-body numerical simulations, using the symplectic integrator SWIFT, taking into account the gravitational influence of the star and the planet on massless test particles. A constant migration rate is assumed for the planet. The effect of planetary migration on the trapping of particles in mean motion resonances is found to be very sensitive to the initial eccentricity of the planet and of the planetesimals. A planetary eccentricity as low as 0.05 is enough to smear out all the resonant structures, except for the most massive planets. The planetesimals also initially have to be on orbits with a mean eccentricity of less than than 0.1 in order to keep the resonant clumps visible. This numerical work extends previous analytical studies and provides a collection of disk images that may help in interpreting the observations of structures in debris disks. Overall, it shows that stringent conditions must be fulfilled to obtain observable resonant structures in debris disks. Theoretical models of the origin of planetary migration will therefore have to explain how planetary systems remain in a suitable configuration to reproduce the observed structures.Comment: 16 pages, 13 figures. Accepted for publication in A&

    New constrains on Gliese 86 B

    Get PDF
    We present the results of multi epochs imaging observations of the companion to the planetary host Gliese 86. Associated to radial velocity measurements, this study aimed at characterizing dynamically the orbital properties and the mass of this companion (here after Gliese 86 B), but also at investigating the possible history of this particular system. We used the adaptive optics instrument NACO at the ESO Very Large Telescope to obtain deep coronographic imaging in order to determine new photometric and astrometric measurements of Gliese 86 B. Part of the orbit is resolved. The photometry of Gliese B indicates colors compatible with a ~70 Jupiter mass brown dwarf or a white dwarf. Both types of objects allow to fit the available, still limited astrometric data. Besides, if we attribute the long term radial velocity residual drift observed for Gliese A to B, then the mass of the latter object is ~0.5 Msun. We analyse both astrometric and radial velocity data to propose first orbital parameters for Gliese B. Assuming Gliese B is a ~0.5 Msun white dwarf, we explore the constraints induced by this hypothesis and refine the parameters of the system.Comment: 10 pages, 18 figures, accepted in A&

    Investigating the flyby scenario for the HD 141569 system

    Full text link
    HD 141569, a triple star system, has been intensively observed and studied for its massive debris disk. It was rather regarded as a gravitationally bound triple system but recent measurements of the HD 141569A radial velocity seem to invalidate this hypothesis. The flyby scenario has therefore to be investigated to test its compatibility with the observations. We present a study of the flyby scenario for the HD141569 system, by considering 3 variants: a sole flyby, a flyby associated with one planet and a flyby with two planets. We use analytical calculations and perform N-body numerical simulations of the flyby encounter. The binary orbit is found to be almost fixed by the observational constraint on a edge-on plane with respect to the observers. If the binary has had an influence on the disk structure, it should have a passing time at the periapsis between 5000 and 8000 years ago and a distance at periapsis between 600 and 900 AU. The best scenario for reproducing the disk morphology is a flyby with only 1 planet. For a 2 Mj (resp. 8 Mj) planet, its eccentricity must be around 0.2 (resp. below 0.1). In the two cases, its apoapsis is about 130 AU. Although the global disk shape is reasonably well reproduced, some features cannot be explain by the present model and the likehood of the flyby event remains an issue. Dynamically speaking, HD 141569 is still a puzzling system
    corecore