1,539 research outputs found
Achieving stationary high performance plasmas at Wendelstein 7-X
This work reports on recent results on the search for high performance plasma scenarios at the magnetically confined stellarator fusion device Wendelstein 7-X. In four new designed scenarios, the development from transient toward stationary plasmas of improved performance has been realized. In particular, a high performance duration of up to 5 s, an energy confinement time of 0.3 s, a diamagnetic energy of 1.1 MJ, a central ion temperature of 2.2 keV, and a fusion triple product of 3.4 × 10 19 m − 3 · keV · s have been achieved, and previously observed limitations of the machine have been overcome, regarding both the performance and its duration. The two main experimental techniques for stationary high performance are neutral beam injection core fueling on the one hand and the use of a magnetic field configuration with internal islands on the other hand. Two of the developed scenarios are expected to be extendable straightforward toward a duration of several tens of seconds, making use of the long pulse operation capabilities of W7-X.</p
Observation of confined current ribbon in JET plasmas
we report the identification of a localised current structure inside the JET
plasma. It is a field aligned closed helical ribbon, carrying current in the
same direction as the background current profile (co-current), rotating
toroidally with the ion velocity (co-rotating). It appears to be located at a
flat spot in the plasma pressure profile, at the top of the pedestal. The
structure appears spontaneously in low density, high rotation plasmas, and can
last up to 1.4 s, a time comparable to a local resistive time. It considerably
delays the appearance of the first ELM.Comment: 10 pages, 6 figure
Understanding the core density profile in TCV H-mode plasmas
Results from a database analysis of H-mode electron density profiles on the
Tokamak \`a Configuration Variable (TCV) in stationary conditions show that the
logarithmic electron density gradient increases with collisionality. By
contrast, usual observations of H-modes showed that the electron density
profiles tend to flatten with increasing collisionality. In this work it is
reinforced that the role of collisionality alone, depending on the parameter
regime, can be rather weak and in these, dominantly electron heated TCV cases,
the electron density gradient is tailored by the underlying turbulence regime,
which is mostly determined by the ratio of the electron to ion temperature and
that of their gradients. Additionally, mostly in ohmic plasmas, the Ware-pinch
can significantly contribute to the density peaking. Qualitative agreement
between the predicted density peaking by quasi-linear gyrokinetic simulations
and the experimental results is found. Quantitative comparison would
necessitate ion temperature measurements, which are lacking in the considered
experimental dataset. However, the simulation results show that it is the
combination of several effects that influences the density peaking in TCV
H-mode plasmas.Comment: 23 pages, 12 figure
Opening of endothelial cell–cell contacts due to sonoporation
Ultrasound insonification of microbubbles can locally increase vascular permeability to enhance drug delivery. To control and optimize the therapeutic potential, we need to better understand the underlying biological mechanisms of the drug delivery pathways. The aim of this in vitro study was to elucidate the microbubble-endothelial cell interaction using the Brandaris 128 ultra-high-speed camera (up to 25 Mfps) coupled to a custom-built Nikon confocal microscope, to visualize both microbubble oscillation and the cellular response. Sonoporation and opening of cell-cell contacts by single αVβ3-targeted microbubbles (n = 152) was monitored up to 4 min after ultrasound insonification (2 MHz, 100–400 kPa, 10 cycles). Sonoporation occurred when microbubble excursion amplitudes exceeded 0.7 μm. Quantification of the influx of the fluorescent model drug propidium iodide upon sonoporation showed that the size of the created pore increased for larger microbubble excursion amplitudes. Microbubble-mediated opening of cell-cell contacts occurred as a cellular response upon sonoporation and did not correlate with the microbubble excursion amplitude itself. The initial integrity of the cell-cell contacts affected the susceptibly to drug delivery, since cell-cell contacts opened more often when cells were only partially attached to their neighbors (48%) than when fully attached (14%). The drug delivery outcomes were independent of nonlinear microbubble behavior, microbubble location, and cell size. In conclusion, by studying the microbubble–cell interaction at nanosecond and nanometer resolution the relationship between drug delivery pathways and their underlying mechanisms was further unraveled. These novel insights will aid the development of safe and efficient microbubble-mediated drug delivery
High-Resolution Imaging of Intracellular Calcium Fluctuations Caused by Oscillating Microbubbles
Ultrasound insonification of microbubbles can locally enhance drug delivery, but the microbubble–cell interaction remains poorly understood. Because intracellular calcium (Cai 2+) is a key cellular regulator, unraveling the Cai 2+ fluctuations caused by an oscillating microbubble provides crucial insight into the underlying bio-effects. Therefore, we developed an optical imaging system at nanometer and nanosecond resolution that can resolve Cai 2+ fluctuations and microbubble oscillations. Using this system, we clearly distinguished three Cai 2+ uptake profiles upon sonoporation of endothelial cells, which strongly correlated with the microbubble oscillation amplitude, severity of sonoporation and opening of cell–cell contacts. We found a narrow operating range for viable drug delivery without lethal cell damage. Moreover, adjacent cells were affected by a calcium wave propagating at 15 μm/s. With the unique optical system, we unraveled the microbubble oscillation behavior required for drug delivery and Cai 2+ fluctuations, providing new insight into the microbubble–cell interaction to aid clinical translation
- …