2,722 research outputs found
Universal Flow-Driven Conical Emission in Ultrarelativistic Heavy-Ion Collisions
The double-peak structure observed in soft-hard hadron correlations is
commonly interpreted as a signature for a Mach cone generated by a supersonic
jet interacting with the hot and dense medium created in ultrarelativistic
heavy-ion collisions. We show that it can also arise due to averaging over many
jet events in a transversally expanding background. We find that the
jet-induced away-side yield does not depend on the details of the
energy-momentum deposition in the plasma, the jet velocity, or the system size.
Our claim can be experimentally tested by comparing soft-hard correlations
induced by heavy-flavor jets with those generated by light-flavor jets.Comment: 4 pages, 3 figure
Supercollision cooling in undoped graphene
Carrier mobility in solids is generally limited by electron-impurity or
electron-phonon scattering depending on the most frequently occurring event.
Three body collisions between carriers and both phonons and impurities are
rare; they are denoted supercollisions (SCs). Elusive in electronic transport
they should emerge in relaxation processes as they allow for large energy
transfers. As pointed out in Ref. \onlinecite{Song2012PRL}, this is the case in
undoped graphene where the small Fermi surface drastically restricts the
allowed phonon energy in ordinary collisions. Using electrical heating and
sensitive noise thermometry we report on SC-cooling in diffusive monolayer
graphene. At low carrier density and high phonon temperature the Joule power
obeys a law as a function of electronic temperature .
It overrules the linear law expected for ordinary collisions which has recently
been observed in resistivity measurements. The cubic law is characteristic of
SCs and departs from the dependence recently reported for metallic
graphene below the Bloch-Gr\"{u}neisen temperature. These supercollisions are
important for applications of graphene in bolometry and photo-detection
Recommended from our members
Real Time Detection and Tracking of Spatial Event Clusters
We demonstrate a system of tools for real-time detection of significant clusters of spatial events and observing their evolution. The tools include an incremental stream clustering algorithm, interactive techniques for controlling its operation, a dynamic map display showing the current situation, and displays for investigating the cluster evolution (time line and space-time cube)
Superadiabatic transitions in quantum molecular dynamics
We study the dynamics of a molecule’s nuclear wave function near an avoided crossing of two electronic energy levels for one nuclear degree of freedom. We derive the general form of the Schrödinger equation in the nth superadiabatic representation for all n є N. Using these results, we obtain closed formulas for the time development of the component of the wave function in an initially unoccupied energy subspace when a wave packet travels through the transition region. In the optimal superadiabatic representation, which we define, this component builds up monotonically. Finally, we give an explicit formula for the transition wave function away from the avoided crossing, which is in excellent agreement with high-precision numerical calculations
Sodium Transport in Capillaries Isolated from Rat Brain
Brain capillary endothelial cells form a bloodbrain barrier (BBB) that appears to play a role in fluid and ion homeostasis in brain. One important transport system that may be involved in this regulatory function is the Na + ,K + -ATPase that was previously demonstrated to be present in isolated brain capillaries. The goal of the present study was to identify additional Na + transport systems in brain capillaries that might contribute to BBB function. Microvessels were isolated from rat brains and 22 Na + uptake by and efflux from the cells were studied. Total 22 Na + uptake was increased and the rate of 22 Na + efflux was decreased by ouabain, confirming the presence of Na + ,K + -ATPase in capillary cells. After inhibition of Na + ,K + -ATPase activity, another saturable Na + transport mechanism became apparent. Capillary uptake of 22 Na + was stimulated by an elevated concentration of Na + or H + inside the cells and inhibited by extracellular Na + , H + , Li + , and NH 4 + . Amiloride inhibited 22 Na + uptake with a K i between 10 −5 and 10 −6 M but there was no effect of 1 mM furosemide on 22 Na + uptake by the isolated microvessels. These results indicate the presence in brain capillaries of a transport system capable of mediating Na + / Na + and Na + /H + exchange. As a similar transport system does not appear to be present on the luminal membrane of the brain capillary endothelial cell, it is proposed that Na + /H + exchange occurs primarily across the antiluminal membrane.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66187/1/j.1471-4159.1983.tb09065.x.pd
Sensitivity of Azimuthal Jet Tomography to Early Time Energy-Loss at RHIC and LHC
We compute the jet path-length dependence of energy-loss for higher azimuthal
harmonics of jet-fragments in a generalized model of energy-loss that can
interpolate between pQCD and AdS/CFT limits and compare results with Glauber
and CGC/KLN initial conditions. We find, however, that even the high-pT second
moment is most sensitive to the poorly known early-time evolution during the
first fm/c. Moreover, we demonstrate that quite generally the energy and
density-dependence leads to an overquenching jet fragments relative to the
first LHC -data, once the parameters of the energy-loss model are fixed
from -data at RHIC.Comment: 4 pages, 2 figures, version accepted for publication in J. Phys. G:
Nucl. Part. Phys. as conference proceedings for Quark Matter 2011, May 23 -
May 28, Annecy, Franc
Исследование закономерностей развития структурно-химической неоднородности в разнородном сварном соединении трубопроводного переходника
Данная работа посвящена исследованию структурно-химической неоднородности (СХН) трубопроводного переходника из разнородных сталей, выполненного аргонодуговой сваркой (АрДС). При помощи оптического микроскопа получены фотографии СХН и ее размеры. СХН выражается в появлении прослоек (карбидной и ферритной) с разным химическим составом. Приведены графики роста ширин прослоек от времени выдержки и температуры.This paper is devoted to the comparison of the structural and chemical inhomogeneity (SCI) of adapters made of dissimilar steels, made by tungsten insert gas (TIG). By means of optical microscope, photographs of the SCI and its dimensions were obtained. SCI is expressed in the appearance of interlayers (carbide and ferritic) with different chemical composition. Graphs of the growth of the widths of the interlayers from the time of exposure and temperature are given
Are there plasminos in superconductors?
Hot and/or dense, normal-conducting systems of relativistic fermions exhibit
a particular collective excitation, the so-called plasmino. We compute the
one-loop self-energy, the dispersion relation and the spectral density for
fermions interacting via attractive boson exchange. It is shown that plasminos
also exist in superconductors.Comment: 15 pages, 14 figures, revte
Two-point phase correlations of a one-dimensional bosonic Josephson junction
We realize a one-dimensional Josephson junction using quantum degenerate Bose
gases in a tunable double well potential on an atom chip. Matter wave
interferometry gives direct access to the relative phase field, which reflects
the interplay of thermally driven fluctuations and phase locking due to
tunneling. The thermal equilibrium state is characterized by probing the full
statistical distribution function of the two-point phase correlation.
Comparison to a stochastic model allows to measure the coupling strength and
temperature and hence a full characterization of the system
Derivation of fluid dynamics from kinetic theory with the 14--moment approximation
We review the traditional derivation of the fluid-dynamical equations from
kinetic theory according to Israel and Stewart. We show that their procedure to
close the fluid-dynamical equations of motion is not unique. Their approach
contains two approximations, the first being the so-called 14-moment
approximation to truncate the single-particle distribution function. The second
consists in the choice of equations of motion for the dissipative currents.
Israel and Stewart used the second moment of the Boltzmann equation, but this
is not the only possible choice. In fact, there are infinitely many moments of
the Boltzmann equation which can serve as equations of motion for the
dissipative currents. All resulting equations of motion have the same form, but
the transport coefficients are different in each case.Comment: 15 pages, 3 figures, typos fixed and discussions added; EPJA: Topical
issue on "Relativistic Hydro- and Thermodynamics
- …