478 research outputs found

    The low-temperature energy calibration system for the CUORE bolometer array

    Full text link
    The CUORE experiment will search for neutrinoless double beta decay (0nDBD) of 130Te using an array of 988 TeO_2 bolometers operated at 10 mK in the Laboratori Nazionali del Gran Sasso (Italy). The detector is housed in a large cryogen-free cryostat cooled by pulse tubes and a high-power dilution refrigerator. The TeO_2 bolometers measure the event energies, and a precise and reliable energy calibration is critical for the successful identification of candidate 0nDBD and background events. The detector calibration system under development is based on the insertion of 12 gamma-sources that are able to move under their own weight through a set of guide tubes that route them from deployment boxes on the 300K flange down into position in the detector region inside the cryostat. The CUORE experiment poses stringent requirements on the maximum heat load on the cryostat, material radiopurity, contamination risk and the ability to fully retract the sources during normal data taking. Together with the integration into a unique cryostat, this requires careful design and unconventional solutions. We present the design, challenges, and expected performance of this low-temperature energy calibration system.Comment: To be published in the proceedings of the 13th International Workshop on Low Temperature Detectors (LTD), Stanford, CA, July 20-24, 200

    Charge collection and trapping in low‐temperature silicon detectors

    Get PDF
    Charge collection efficiency measurements in silicon detectors at low temperature (T \u3c 0.5 K) and low applied electric field (E=0.1–100 V/cm) were performed using a variety of high‐purity, p‐type silicon samples with room‐temperature resistivity in the range 2–40 kΩ cm. Good charge collection under these conditions of low temperature and low electric field is necessary for background suppression, through the simultaneous measurement of phonons and ionization, in a very low event rate dark matter search or neutrino physics experiment. Charge loss due to trapping during drift is present in some samples, but the data suggest that another charge–loss mechanism is also important. We present results which indicate that, for 60 keV energy depositions, a significant fraction of the total charge loss by trapping occurs in the initial electron‐hole cloud near the event location which may briefly act as a shielded, field‐free region. In addition, measurements of the lateral size, transverse to the applied electric field, of the initial electron‐hole cloud indicate large transverse diffusion lengths. At the lowest fields a lateral diameter on the order of 1 mm is found in a detector ∼5 mm thick

    Effect of implanted metal impurities on superconducting tungsten films

    Get PDF
    The superconducting transition temperature of more than 30 thin-film tungsten samples was measured using a dilution refrigerator. The samples were fabricated using a 99.999% pure tungsten target and a dc magnetron sputtering system. Individual films were then doped with metal impurity ions using an accurate ion implantation technique. The effect of the metal–ion doping on the superconducting transition temperature was measured for samples with superconducting transitions in the range of 40–150 mK. Magnetic dopant species including Ni, Co, and Fe resulted in suppressed values of the tungsten Tc. The suppression was linear with increasing dopant concentration, for concentrations up to tens of ppm. For higher concentrations of magnetic atoms, the data are consistent with the Abrikosov–Gor\u27kov theory [Soviet Physics JETP 12, 1243 (1961)] modified by antiferromagnetic impurity–impurity interactions. By contrast, tungsten films implanted with Mg or Cr showed little change in Tc after doping. In this article, we present data from cryogenic experiments on these films. We also present x-ray diffraction (XRD) spectra for a subset of the films. Our XRD data confirm that the observed suppression in Tc for the magnetically doped samples is not due to any structural changes (e.g., lattice distortion or damage) induced by the implantation process

    Confocal sputtering of conformal α-β phase W films on etched Al features

    Get PDF
    The authors report on thin-film processing improvements in the fabrication of superconducting quasiparticle-trap-assisted electrothermal-feedback transition-edge sensors used in the design of cryogenic dark matter search detectors. The work was performed as part of a detector upgrade project that included optimization of a new confocal sputtering system and development of etch recipes compatible with patterning 40 nm-thick, α-β mixed-phase W films deposited on 300–600 nm-thick, patterned Al. The authors found that their standard exothermic Al wet etch recipes provided inadequate W/Al interfaces and led to poor device performance. The authors developed a modified Al wet-etch recipe that effectively mitigates geometrical step-coverage limitations while maintaining their existing device design. Data presented here include scanning electron microscope and focused ion beam images of films and device interfaces obtained with the new Al etch method. The authors also introduce a method for quantitatively measuring the energy collection efficiency through these interfaces

    Nonlinear Optimal Filter Technique For Analyzing Energy Depositions In TES Sensors Driven Into Saturation

    Get PDF
    We present a detailed thermal and electrical model of superconducting transition edge sensors (TESs) connected to quasiparticle (qp) traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search) Ge and Si detectors. We show that this improved model, together with a straightforward time-domain optimal filter, can be used to analyze pulses well into the nonlinear saturation region and reconstruct absorbed energies with optimal energy resolution

    Spatial imaging of charge transport in silicon at low temperature

    Get PDF
    We present direct imaging measurements of charge transport across a 1 cm × 1 cm × 4 mm crystal of high purity silicon (∼20 kΩ cm) at temperatures between 500 mK and 5 K. We use these data to determine the intervalley scattering rate of electrons as a function of the electric field applied along the ⟨111⟩ crystal axis, and we present a phenomenological model of intervalley scattering which explains the constant scattering rate seen at low-voltage for cryogenic temperatures. We also demonstrate direct imaging measurements of effective hole mass anisotropy, which is strongly dependent on both temperature and electric field strength. The observed effects can be explained by a warping of the valence bands for carrier energies near the spin-orbit splitting energy in silicon

    Imaging the oblique propagation of electrons in germanium crystals at low temperature and low electric field

    Get PDF
    Excited electrons in the conduction band of germanium collect into four energy minima, or valleys, in momentum space. These local minima have highly anisotropic mass tensors which cause the electrons to travel in directions which are oblique to an applied electric field at sub-Kelvin temperatures and low electric fields, in contrast to the more isotropic behavior of the holes. This experiment produces a full two-dimensional image of the oblique electron and hole propagation and the quantum transitions of electrons between valleys for electric fields oriented along the [0,0,1] direction. Charge carriers are excited with a focused laser pulse on one face of a germanium crystal and then drifted through the crystal by a uniform electric field of strength between 0.5 and 6 V/cm. The pattern of charge density arriving on the opposite face is used to reconstruct the trajectories of the carriers. Measurements of the two-dimensional pattern of charge density are compared in detail with Monte Carlo simulations developed for the Cryogenic Dark Matter Search (SuperCDMS) to model the transport of charge carriers in high-purity germanium detectors

    Relationship of EMAST and Microsatellite Instability Among Patients with Rectal Cancer

    Get PDF
    BackgroundElevated microsatellite instability at selected tetranucleotide repeats (EMAST) is a genetic signature identified in 60% of sporadic colon cancers and may be linked with heterogeneous expression of the DNA mismatch repair (MMR) protein hMSH3. Unlike microsatellite instability-high (MSI-H) in which hypermethylation of hMLH1 occurs followed by multiple susceptible gene mutations, EMAST may be associated with inflammation and subsequent relaxation of MMR function with the biological consequences not known. We evaluated the prevalence of EMAST and MSI in a population-based cohort of rectal cancers, as EMAST has not been previously determined in rectal cancers.MethodsWe analyzed 147 sporadic cases of rectal cancer using five tetranucleotide microsatellite markers and National-Cancer-Institute-recommended MSI (mononucleotide and dinucleotide) markers. EMAST and MSI determinations were made on analysis of DNA sequences of the polymerase chain reaction products and determined positive if at least two loci were found to have frame-shifted repeats upon comparison between normal and cancer samples from the same patient. We correlated EMAST data with race, gender, and tumor stage and examined the samples for lymphocyte infiltration.ResultsAmong this cohort of patients with rectal cancer (mean age 62.2 ± 10.3years, 36% female, 24% African American), 3/147 (2%) showed MSI (three males, two African American) and 49/147 (33%) demonstrated EMAST. Rectal tumors from African Americans were more likely to show EMAST than Caucasians (18/37, 49% vs. 27/104, 26%, p = 0.014) and were associated with advanced stage (18/29, 62% EMAST vs. 18/53, 37%, non-EMAST p = 0.02). There was no association between EMAST and gender. EMAST was more prevalent in rectal tumors that showed peri-tumoral infiltration compared to those without (30/49, 60% EMAST vs. 24/98, 25% non-EMAST, p = 0.0001).ConclusionsEMAST in rectal cancer is common and MSI is rare. EMAST is associated with African-American race and may be more commonly seen with metastatic disease. The etiology and consequences of EMAST are under investigation, but its association with immune cell infiltration suggests that inflammation may play a role for its development

    Characterization of SuperCDMS 1-inch Ge Detectors

    Get PDF
    The newly commissioned SuperCDMS Soudan experiment aims to search for WIMP dark matter with a sensitivity to cross sections of 5×10^(−45)cm^2 and larger (90% CL upper limit). This goal is facilitated by a new set of germanium detectors, 2.5 times more massive than the ones used in the CDMS-II experiment, and with a different athermal phonon sensor layout that eliminates radial degeneracy in position reconstruction of high radius events. We present characterization data on these detectors, as well as improved techniques for correcting position-dependent variations in pulse shape across the detector. These improvements provide surface-event discrimination sufficient for a reach of 5×10^(−45)cm^2

    Status of the CRESST Dark Matter Search

    Full text link
    The CRESST experiment aims for a detection of dark matter in the form of WIMPs. These particles are expected to scatter elastically off the nuclei of a target material, thereby depositing energy on the recoiling nucleus. CRESST uses scintillating CaWO4 crystals as such a target. The energy deposited by an interacting particle is primarily converted to phonons which are detected by transition edge sensors. In addition, a small fraction of the interaction energy is emitted from the crystals in the form of scintillation light which is measured in coincidence with the phonon signal by a separate cryogenic light detector for each target crystal. The ratio of light to phonon energy permits the discrimination between the nuclear recoils expected from WIMPs and events from radioactive backgrounds which primarily lead to electron recoils. CRESST has shown the success of this method in a commissioning run in 2007 and, since then, further investigated possibilities for an even better suppression of backgrounds. Here, we report on a new class of background events observed in the course of this work. The consequences of this observation are discussed and we present the current status of the experiment.Comment: Proceedings of the 13th International Workshop on Low Temperature Detectors, 4 pages, 3 figure
    corecore