332 research outputs found

    Einstein-Podolsky-Rosen-Bohm experiment with relativistic massive particles

    Full text link
    The EPRB experiment with massive partcles can be formulated if one defines spin in a relativistic way. Two versions are discussed: The one using the spin operator defined via the relativistic center-of-mass operator, and the one using the Pauli-Lubanski vector. Both are shown to lead to the SAME prediction for the EPRB experiment: The degree of violation of the Bell inequality DECREASES with growing velocity of the EPR pair of spin-1/2 particles. The phenomenon can be physically understood as a combined effect of the Lorentz contraction and the Moller shift of the relativistic center of mass. The effect is therefore stronger than standard relativistic phenomena such as the Lorentz contraction or time dilatation. The fact that the Bell inequality is in general less violated than in the nonrelativistic case will have to be taken into account in tests for eavesdropping if massive particles will be used for a key transfer.Comment: Figures added as appeared in PRA, two typos corrected (one important in the formula for eigenvector in Sec. IV); link to the unpublished 1984 paper containing the results (without typos!) of Sec. IV is adde

    Multiscale computational analysis of Xenopus laevis morphogenesis reveals key insights of systems-level behavior

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tissue morphogenesis is a complex process whereby tissue structures self-assemble by the aggregate behaviors of independently acting cells responding to both intracellular and extracellular cues in their environment. During embryonic development, morphogenesis is particularly important for organizing cells into tissues, and although key regulatory events of this process are well studied in isolation, a number of important systems-level questions remain unanswered. This is due, in part, to a lack of integrative tools that enable the coupling of biological phenomena across spatial and temporal scales. Here, we present a new computational framework that integrates intracellular signaling information with multi-cell behaviors in the context of a spatially heterogeneous tissue environment.</p> <p>Results</p> <p>We have developed a computational simulation of mesendoderm migration in the <it>Xenopus laevis </it>explant model, which is a well studied biological model of tissue morphogenesis that recapitulates many features of this process during development in humans. The simulation couples, via a JAVA interface, an ordinary differential equation-based mass action kinetics model to compute intracellular Wnt/β-catenin signaling with an agent-based model of mesendoderm migration across a fibronectin extracellular matrix substrate. The emergent cell behaviors in the simulation suggest the following properties of the system: maintaining the integrity of cell-to-cell contact signals is necessary for preventing fractionation of cells as they move, contact with the Fn substrate and the existence of a Fn gradient provides an extracellular feedback loop that governs migration speed, the incorporation of polarity signals is required for cells to migrate in the same direction, and a delicate balance of integrin and cadherin interactions is needed to reproduce experimentally observed migratory behaviors.</p> <p>Conclusion</p> <p>Our computational framework couples two different spatial scales in biology: intracellular with multicellular. In our simulation, events at one scale have quantitative and dynamic impact on events at the other scale. This integration enables the testing and identification of key systems-level hypotheses regarding how signaling proteins affect overall tissue-level behavior during morphogenesis in an experimentally verifiable system. Applications of this approach extend to the study of tissue patterning processes that occur during adulthood and disease, such as tumorgenesis and atherogenesis.</p

    Heterozygous Mutation of Drosophila Opa1 Causes the Development of Multiple Organ Abnormalities in an Age-Dependent and Organ-Specific Manner

    Get PDF
    Optic Atrophy 1 (OPA1) is a ubiquitously expressed dynamin-like GTPase in the inner mitochondrial membrane. It plays important roles in mitochondrial fusion, apoptosis, reactive oxygen species (ROS) and ATP production. Mutations of OPA1 result in autosomal dominant optic atrophy (DOA). The molecular mechanisms by which link OPA1 mutations and DOA are not fully understood. Recently, we created a Drosophila model to study the pathogenesis of optic atrophy. Heterozygous mutation of Drosophila OPA1 (dOpa1) by P-element insertion results in no obvious morphological abnormalities, whereas homozygous mutation is embryonic lethal. In eye-specific somatic clones, homozygous mutation of dOpa1 causes rough (mispatterning) and glossy (decreased lens deposition) eye phenotypes in adult Drosophila. In humans, heterozygous mutations in OPA1 have been associated with mitochondrial dysfunction, which is predicted to affect multiple organs. In this study, we demonstrated that heterozygous dOpa1 mutation perturbs the visual function and an ERG profile of the Drosophila compound eye. We independently showed that antioxidants delayed the onset of mutant phenotypes in ERG and improved larval vision function in phototaxis assay. Furthermore, heterozygous dOpa1 mutation also caused decreased heart rate, increased heart arrhythmia, and poor tolerance to stress induced by electrical pacing. However, antioxidants had no effects on the dysfunctional heart of heterozygous dOpa1 mutants. Under stress, heterozygous dOpa1 mutations caused reduced escape response, suggesting abnormal function of the skeletal muscles. Our results suggest that heterozygous mutation of dOpa1 shows organ-specific pathogenesis and is associated with multiple organ abnormalities in an age-dependent and organ-specific manner

    Clostridial Glucosylating Toxins Enter Cells via Clathrin-Mediated Endocytosis

    Get PDF
    Clostridium difficile toxin A (TcdA) and toxin B (TcdB), C. sordellii lethal toxin (TcsL) and C. novyi α-toxin (TcnA) are important pathogenicity factors, which represent the family of the clostridial glucosylating toxins (CGTs). Toxin A and B are associated with antibiotic-associated diarrhea and pseudomembraneous colitis. Lethal toxin is involved in toxic shock syndrome after abortion and α-toxin in gas gangrene development. CGTs enter cells via receptor-mediated endocytosis and require an acidified endosome for translocation of the catalytic domain into the cytosol. Here we studied the endocytic processes that mediate cell internalization of the CGTs. Intoxication of cells was monitored by analyzing cell morphology, status of Rac glucosylation in cell lysates and transepithelial resistance of cell monolayers. We found that the intoxication of cultured cells by CGTs was strongly delayed when cells were preincubated with dynasore, a cell-permeable inhibitor of dynamin, or chlorpromazine, an inhibitor of the clathrin-dependent endocytic pathway. Additional evidence about the role of clathrin in the uptake of the prototypical CGT family member toxin B was achieved by expression of a dominant-negative inhibitor of the clathrin-mediated endocytosis (Eps15 DN) or by siRNA against the clathrin heavy chain. Accordingly, cells that expressed dominant-negative caveolin-1 were not protected from toxin B-induced cell rounding. In addition, lipid rafts impairment by exogenous depletion of sphingomyelin did not decelerate intoxication of HeLa cells by CGTs. Taken together, our data indicate that the endocytic uptake of the CGTs involves a dynamin-dependent process that is mainly governed by clathrin

    Staged induction of HIV-1 glycan–dependent broadly neutralizing antibodies

    Get PDF
    A preventive HIV-1 vaccine should induce HIV-1–specific broadly neutralizing antibodies (bnAbs). However, bnAbs generally require high levels of somatic hypermutation (SHM) to acquire breadth, and current vaccine strategies have not been successful in inducing bnAbs. Because bnAbs directed against a glycosylated site adjacent to the third variable loop (V3) of the HIV-1 envelope protein require limited SHM, the V3-glycan epitope is an attractive vaccine target. By studying the cooperation among multiple V3-glycan B cell lineages and their coevolution with autologous virus throughout 5 years of infection, we identify key events in the ontogeny of a V3-glycan bnAb. Two autologous neutralizing antibody lineages selected for virus escape mutations and consequently allowed initiation and affinity maturation of a V3-glycan bnAb lineage. The nucleotide substitution required to initiate the bnAb lineage occurred at a low-probability site for activation-induced cytidine deaminase activity. Cooperation of B cell lineages and an improbable mutation critical for bnAb activity defined the necessary events leading to breadth in this V3-glycan bnAb lineage. These findings may, in part, explain why initiation of V3-glycan bnAbs is rare, and suggest an immunization strategy for inducing similar V3-glycan bnAbs

    Individuelle und strukturelle Faktoren der Mitgliederbindung im Sportverein

    Get PDF
    This article analyses the conditions influencing the commitment of members of sports clubs. It focuses not only on individual characteristics of members, but also on the corresponding structural conditions of sports clubs related to the individual decision to quit or continue their membership. The influences of both the individual and context levels on the commitment of members are estimated in different multi-level models. Results of these multi-level analyses indicate that commitment of members is not just an outcome of individual characteristics such as strong commitment to the club, positively perceived communication and cooperation, satisfaction with sports clubsʼ offers, or voluntary engagement. It is also influenced by club-specific structural conditions: commitment is more probable in rural sports clubs, and clubs who explicitly support sociability, whereas success-oriented sporting goals in clubs have a destabilizing effect.In diesem Beitrag werden Bedingungen analysiert, die die Mitgliederbindung in Sportvereinen beeinflussen. Neben individuellen Merkmalen interessieren dabei auch die Strukturbedingungen der Sportvereine, die im Zusammenhang mit der individuellen Wahlhandlung zwischen stabiler Mitgliedschaft oder Austritt stehen. Der Einfluss der Individual- und Kontextebene auf die Mitgliederbindung in Sportvereinen wird anhand unterschiedlicher Mehrebenenmodelle geschätzt. Die Analysen machen deutlich, dass sich die dauerhafte Mitgliedschaft in Sportvereinen nicht allein auf individuelle Merkmale der Mitgliedschaft, wie eine ausgeprägte Verbundenheit, ein positiv wahrgenommenes soziales Miteinander, die Zufriedenheit mit der Vereinsarbeit sowie die ehrenamtliche Mitarbeit zurückführen lässt. Darüber hinaus nehmen vereinsspezifische Strukturbedingungen Einfluss auf die Mitgliederbindung, wobei in ländlich geprägten Sportvereinen und in Vereinen, die Geselligkeit explizit fördern und in denen das Vereinsziel sportlicher Erfolg eher eine untergeordnete Rolle spielt, die Austrittswahrscheinlichkeit geringer ist

    Chimerism in Wild Adult Populations of the Broadcast Spawning Coral Acropora millepora on the Great Barrier Reef

    Get PDF
    Chimeras are organisms containing tissues or cells of two or more genetically distinct individuals, and are known to exist in at least nine phyla of protists, plants, and animals. Although widespread and common in marine invertebrates, the extent of chimerism in wild populations of reef corals is unknown.The extent of chimerism was explored within two populations of a common coral, Acropora millepora, on the Great Barrier Reef, Australia, by using up to 12 polymorphic DNA microsatellite loci. At least 2% and 5% of Magnetic Island and Pelorus Island populations of A. millepora, respectively, were found to be chimeras (3% overall), based on conservative estimates. A slightly less conservative estimate indicated that 5% of colonies in each population were chimeras. These values are likely to be vast underestimates of the true extent of chimerism, as our sampling protocol was restricted to a maximum of eight branches per colony, while most colonies consist of hundreds of branches. Genotypes within chimeric corals showed high relatedness, indicating that genetic similarity is a prerequisite for long-term acceptance of non-self genotypes within coral colonies.While some brooding corals have been shown to form genetic chimeras in their early life history stages under experimental conditions, this study provides the first genetic evidence of the occurrence of coral chimeras in the wild and of chimerism in a broadcast spawning species. We hypothesize that chimerism is more widespread in corals than previously thought, and suggest that this has important implications for their resilience, potentially enhancing their capacity to compete for space and respond to stressors such as pathogen infection
    • …
    corecore