17 research outputs found

    Towards a mathematical definition of functional connectivity

    Get PDF
    Functional connectivity is a neurobiological notion, informally stating that there would be a strong dependence between neurons and that this dependence might be useful in understanding the way the brain encodes stimuli, programs actions, etc. However, in practice such strong dependencies are often reconstructed via Hawkes processes based on an amazingly small number of neurons, because of the very scarce observation of this very complex and huge network. We derive new simple equations, which explain how the ideal Hawkes reconstruction is linked to the covariance between the observed neurons. These equations help us in particular to understand what the Hawkes reconstruction does in two settings, synchronization and classical point process asymptotics. Moreover they might help us to also understand what is qualitatively happening at the scale of the huge unobserved network, paving the path for a possible mathematical definition of functional connectivity

    Towards a mathematical definition of functional connectivity

    Get PDF
    Functional connectivity is a neurobiological notion, informally stating that there would be a strong dependence between neurons and that this dependence might be useful in understanding the way the brain encodes stimuli, programs actions, etc. However, in practice such strong dependencies are often reconstructed via Hawkes processes based on an amazingly small number of neurons, because of the very scarce observation of this very complex and huge network. We derive new simple equations, which explain how the ideal Hawkes reconstruction is linked to the covariance between the observed neurons. These equations help us in particular to understand what the Hawkes reconstruction does in two settings, synchronization and classical point process asymptotics. Moreover they might help us to also understand what is qualitatively happening at the scale of the huge unobserved network, paving the path for a possible mathematical definition of functional connectivity

    Le rôle de la dopamine dans l'acquisition de l'inhibition latente

    No full text
    BORDEAUX2-BU Sci.Homme/Odontol. (330632102) / SudocSudocFranceF

    Strategy inference during learning via cognitive activity-based credit assignment models

    No full text
    Abstract We develop a method for selecting meaningful learning strategies based solely on the behavioral data of a single individual in a learning experiment. We use simple Activity-Credit Assignment algorithms to model the different strategies and couple them with a novel hold-out statistical selection method. Application on rat behavioral data in a continuous T-maze task reveals a particular learning strategy that consists in chunking the paths used by the animal. Neuronal data collected in the dorsomedial striatum confirm this strategy

    Developmental Requirement of Homeoprotein Otx2 for Specific Habenulo-Interpeduncular Subcircuits

    No full text
    International audienceThe habenulo-interpeduncular system (HIPS) is now recognized as a critical circuit modulating aversion, reward, and social behavior. There is evidence that dysfunction of this circuit leads to psychiatric disorders. Because psychiatric diseases may originate in developmental abnormalities, it is crucial to investigate the developmental mechanisms controlling the formation of the HIPS. Thus far, this issue has been the focus of limited studies. Here, we explored the developmental processes underlying the formation of the medial habenula (MHb) and its unique output, the interpeduncular nucleus (IPN), in mice independently of their gender. We report that the Otx2 homeobox gene is essential for the proper development of both structures. We show that MHb and IPN neurons require Otx2 at different developmental stages and, in both cases, Otx2 deletion leads to disruption of HIPS subcircuits. Finally, we show that Otx2+ neurons tend to be preferentially interconnected. This study reveals that synaptically connected components of the HIPS, despite radically different developmental strategies, share high sensitivity to Otx2 expression.SIGNIFICANCE STATEMENT Brain reward circuits are highly complex and still poorly understood. In particular, it is important to understand how these circuits form as many psychiatric diseases may arise from their abnormal development. This work shows that Otx2, a critical evolutionary conserved gene implicated in brain development and a predisposing factor for psychiatric diseases, is required for the formation of the habenulo-interpeduncular system (HIPS), an important component of the reward circuit. Otx2 deletion affects multiple processes such as proliferation and migration of HIPS neurons. Furthermore, neurons expressing Otx2 are preferentially interconnected. Therefore, Otx2 expression may represent a code that specifies the connectivity of functional subunits of the HIPS. Importantly, the Otx2 conditional knock-out animals used in this study might represent a new genetic model of psychiatric diseases
    corecore