1,147 research outputs found

    Estimating Column Density in Molecular Clouds with FIR and Sub-mm Emission Maps

    Full text link
    We have used a numerical simulation of a turbulent cloud to synthesize maps of the thermal emission from dust at a variety of far-IR and sub-mm wavelengths. The average column density and external radiation field in the simulation is well matched to clouds such as Perseus and Ophiuchus. We use pairs of single-wavelength emission maps to derive the dust color temperature and column density, and we compare the derived column densities with the true column density. We demonstrate that longer wavelength emission maps yield less biased estimates of column density than maps made towards the peak of the dust emission spectrum. We compare the scatter in the derived column density with the observed scatter in Perseus and Ophiuchus. We find that while in Perseus all of the observed scatter in the emission-derived versus the extinction-derived column density can be attributed to the flawed assumption of isothermal dust along each line of sight, in Ophiuchus there is additional scatter above what can be explained by the isothermal assumption. Our results imply that variations in dust emission properties within a molecular cloud are not necessarily a major source of uncertainty in column density measurements.Comment: Accepted to ApJ Letter

    The Propagation of Ly_ in Evolving Protoplanetary Disks

    Full text link
    We study the role resonant scattering plays in the transport of Ly_ photons in accreting protoplanetary disk systems subject to varying degrees of dust settling. While the intrinsic stellar far-UV (FUV) spectrum of accreting T Tauri systems may already be dominated by a strong, broad Ly_ line (~80% of the FUV luminosity), we find that resonant scattering further enhances the Ly_ density in the deep molecular layers of the disk. Ly_ is scattered downward efficiently by the photodissociated atomic hydrogen layer that exists above the molecular disk. In contrast, FUV-continuum photons pass unimpeded through the photodissociation layer and (forward-)scatter inefficiently off dust grains. Using detailed, adaptive grid Monte Carlo radiative transfer simulations we show that the resulting Ly_/FUV-continuum photon density ratio is strongly stratified; FUV-continuum-dominated in the photodissociation layer and Ly_-dominated field in the molecular disk. The enhancement is greatest in the interior of the disk ( r ~ 1 AU) but is also observed in the outer disk ( r ~ 100 AU). The majority of the total disk mass is shown to be increasingly Ly_ dominated as dust settles toward the midplane.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90763/1/0004-637X_739_2_78.pd

    Emotion Evaluation and Response Slowing in a Non-Human Primate: New Directions for Cognitive Bias Measures of Animal Emotion?

    Get PDF
    The cognitive bias model of animal welfare assessment is informed by studies with humans demonstrating that the interaction between emotion and cognition can be detected using laboratory tasks. A limitation of cognitive bias tasks is the amount of training required by animals prior to testing. A potential solution is to use biologically relevant stimuli that trigger innate emotional responses. Here; we develop a new method to assess emotion in rhesus macaques; informed by paradigms used with humans: emotional Stroop; visual cueing and; in particular; response slowing. In humans; performance on a simple cognitive task can become impaired when emotional distractor content is displayed. Importantly; responses become slower in anxious individuals in the presence of mild threat; a pattern not seen in non-anxious individuals; who are able to effectively process and disengage from the distractor. Here; we present a proof-of-concept study; demonstrating that rhesus macaques show slowing of responses in a simple touch-screen task when emotional content is introduced; but only when they had recently experienced a presumably stressful veterinary inspection. Our results indicate the presence of a subtle “cognitive freeze” response; the measurement of which may provide a means of identifying negative shifts in emotion in animals

    Dust heating by the interstellar radiation field in models of turbulent molecular clouds

    Get PDF
    We have calculated the radiation field, dust grain temperatures, and far infrared emissivity of numerical models of turbulent molecular clouds. When compared to a uniform cloud of the same mean optical depth, most of the volume inside the turbulent cloud is brighter, but most of the mass is darker. There is little mean attenuation from center to edge, and clumping causes the radiation field to be somewhat bluer. There is also a large dispersion, typically by a few orders of magnitude, of all quantities relative to their means. However, despite the scatter, the 850 micron emission maps are well correlated with surface density. The fraction of mass as a function of intensity can be reproduced by a simple hierarchical model of density structure.Comment: 32 pages, 14 figures, submitted to Ap

    Chemistry of a Protoplanetary Disk with Grain Settling and Ly_ Radiation

    Full text link
    We present results from a model of the chemical evolution of protoplanetary disks. In our models, we directly calculate the changing propagation and penetration of a high energy radiation field with Ly_ radiation included. We also explore the effect on our models of including dust grain settling. We find that, in agreement with earlier studies, the evolution of dust grains plays a large role in determining how deep the UV radiation penetrates into the disk. Significant grain settling at the midplane leads to much smaller freeze-out regions and a correspondingly larger molecular layer, which leads to an increase in column density for molecular species such as CO, CN, and SO. The inclusion of Ly_ radiation impacts the disk chemistry through specific species that have large photodissociation cross sections at 1216 Å. These include HCN, NH 3 , and CH 4 , for which the column densities are decreased by an order of magnitude or more due to the presence of Ly_ radiation in the UV spectrum. A few species, such as CO 2 and SO, are enhanced by the presence of Ly_ radiation, but rarely by more than a factor of a few.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90767/1/0004-637X_726_1_29.pd

    Photoelectric cross-sections of gas and dust in protoplanetary disks

    Full text link
    We provide simple polynomial fits to the X-ray photoelectric cross-sections (0.03 < E < 10keV) for mixtures of gas and dust found in protoplanetary disks. Using the solar elemental abundances of Asplund et al. (2009) we treat the gas and dust components separately, facilitating the further exploration evolutionary processes such as grain settling and gain growth. We find that blanketing due to advanced grain-growth (a_max > 1 micron) can reduce the X-ray opacity of dust appreciably at E_X ~ 1keV, coincident with the peak of typical T Tauri X-ray spectra. However, the reduction of dust opacity by dust settling, which is known to occur in protoplanetary disks, is probably a more significant effect. The absorption of 1-10keV X-rays is dominated by gas opacity once the dust abundance has been reduced to about 1% of its diffuse interstellar value. The gas disk establishes a floor to the opacity at which point X-ray transport becomes insensitive to further dust evolution. Our choice of fitting function follows that of Morrison & McCammon (1983), providing a degree of backward-compatibility.Comment: 34 pages, 7 figures. To be published in in Ap

    Pitch continuity and speech source attribution.

    Full text link
    • …
    corecore