74 research outputs found

    Artificial Intelligence-Based Radiotherapy Contouring and Planning to Improve Global Access to Cancer Care.

    Get PDF
    PURPOSE: Increased automation has been identified as one approach to improving global cancer care. The Radiation Planning Assistant (RPA) is a web-based tool offering automated radiotherapy (RT) contouring and planning to low-resource clinics. In this study, the RPA workflow and clinical acceptability were assessed by physicians around the world. METHODS: The RPA output for 75 cases was reviewed by at least three physicians; 31 radiation oncologists at 16 institutions in six countries on five continents reviewed RPA contours and plans for clinical acceptability using a 5-point Likert scale. RESULTS: For cervical cancer, RPA plans using bony landmarks were scored as usable as-is in 81% (with minor edits 93%); using soft tissue contours, plans were scored as usable as-is in 79% (with minor edits 96%). For postmastectomy breast cancer, RPA plans were scored as usable as-is in 44% (with minor edits 91%). For whole-brain treatment, RPA plans were scored as usable as-is in 67% (with minor edits 99%). For head/neck cancer, the normal tissue autocontours were acceptable as-is in 89% (with minor edits 97%). The clinical target volumes (CTVs) were acceptable as-is in 40% (with minor edits 93%). The volumetric-modulated arc therapy (VMAT) plans were acceptable as-is in 87% (with minor edits 96%). For cervical cancer, the normal tissue autocontours were acceptable as-is in 92% (with minor edits 99%). The CTVs for cervical cancer were scored as acceptable as-is in 83% (with minor edits 92%). The VMAT plans for cervical cancer were acceptable as-is in 99% (with minor edits 100%). CONCLUSION: The RPA, a web-based tool designed to improve access to high-quality RT in low-resource settings, has high rates of clinical acceptability by practicing clinicians around the world. It has significant potential for successful implementation in low-resource clinics

    Evolutionary Action Score of TP53 Identifies High-Risk Mutations Associated with Decreased Survival and Increased Distant Metastases in Head and Neck Cancer

    Get PDF
    TP53 is the most frequently altered gene in head and neck squamous cell carcinoma, with mutations occurring in over two-thirds of cases, but the prognostic significance of these mutations remains elusive. In the current study, we evaluated a novel computational approach termed evolutionary action (EAp53) to stratify patients with tumors harboring TP53 mutations as high or low risk, and validated this system in both in vivo and in vitro models. Patients with high-risk TP53 mutations had the poorest survival outcomes and the shortest time to the development of distant metastases. Tumor cells expressing high-risk TP53 mutations were more invasive and tumorigenic and they exhibited a higher incidence of lung metastases. We also documented an association between the presence of high-risk mutations and decreased expression of TP53 target genes, highlighting key cellular pathways that are likely to be dysregulated by this subset of p53 mutations that confer particularly aggressive tumor behavior. Overall, our work validated EAp53 as a novel computational tool that may be useful in clinical prognosis of tumors harboring p53 mutations

    A risk assessment of automated treatment planning and recommendations for clinical deployment

    Get PDF
    CITATION: Kisling, K. et al. 2019. A risk assessment of automated treatment planning and recommendations for clinical deployment. Medical Physics, 46(6): 2567-2574. doi:10.1002/mp.13552The original publication is available at https://aapm.onlinelibrary.wiley.com/journal/24734209Purpose: To assess the risk of failure of a recently developed automated treatment planning tool, the radiation planning assistant (RPA), and to determine the reduction in these risks with implementation of a quality assurance (QA) program specifically designed for the RPA. Methods: We used failure mode and effects analysis (FMEA) to assess the risk of the RPA. The steps involved in the workflow of planning a four-field box treatment of cervical cancer with the RPA were identified. Then, the potential failure modes at each step and their causes were identified and scored according to their likelihood of occurrence, severity, and likelihood of going undetected. Additionally, the impact of the components of the QA program on the detectability of the failure modes was assessed. The QA program was designed to supplement a clinic's standard QA processes and consisted of three components: (a) automatic, independent verification of the results of automated planning; (b) automatic comparison of treatment parameters to expected values; and (c) guided manual checks of the treatment plan. A risk priority number (RPN) was calculated for each potential failure mode with and without use of the QA program. Results: In the RPA automated treatment planning workflow, we identified 68 potential failure modes with 113 causes. The average RPN was 91 without the QA program and 68 with the QA program (maximum RPNs were 504 and 315, respectively). The reduction in RPN was due to an improvement in the likelihood of detecting failures, resulting in lower detectability scores. The top-ranked failure modes included incorrect identification of the marked isocenter, inappropriate beam aperture definition, incorrect entry of the prescription into the RPA plan directive, and lack of a comprehensive plan review by the physician. Conclusions: Using FMEA, we assessed the risks in the clinical deployment of an automated treatment planning workflow and showed that a specialized QA program for the RPA, which included automatic QA techniques, improved the detectability of failures, reducing this risk. However, some residual risks persisted, which were similar to those found in manual treatment planning, and human error remained a major cause of potential failures. Through the risk analysis process, we identified three key aspects of safe deployment of automated planning: (a) user training on potential failure modes; (b) comprehensive manual plan review by physicians and physicists; and (c) automated QA of the treatment plan.https://aapm.onlinelibrary.wiley.com/doi/10.1002/mp.13552Publisher’s versio

    Fully-automated, CT-only GTV contouring for palliative head and neck radiotherapy.

    Get PDF
    Planning for palliative radiotherapy is performed without the advantage of MR or PET imaging in many clinics. Here, we investigated CT-only GTV delineation for palliative treatment of head and neck cancer. Two multi-institutional datasets of palliative-intent treatment plans were retrospectively acquired: a set of 102 non-contrast-enhanced CTs and a set of 96 contrast-enhanced CTs. The nnU-Net auto-segmentation network was chosen for its strength in medical image segmentation, and five approaches separately trained: (1) heuristic-cropped, non-contrast images with a single GTV channel, (2) cropping around a manually-placed point in the tumor center for non-contrast images with a single GTV channel, (3) contrast-enhanced images with a single GTV channel, (4) contrast-enhanced images with separate primary and nodal GTV channels, and (5) contrast-enhanced images along with synthetic MR images with separate primary and nodal GTV channels. Median Dice similarity coefficient ranged from 0.6 to 0.7, surface Dice from 0.30 to 0.56, and 95th Hausdorff distance from 14.7 to 19.7 mm across the five approaches. Only surface Dice exhibited statistically-significant difference across these five approaches using a two-tailed Wilcoxon Rank-Sum test (p ≤ 0.05). Our CT-only results met or exceeded published values for head and neck GTV autocontouring using multi-modality images. However, significant edits would be necessary before clinical use in palliative radiotherapy

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Structural Basis for Imipenem Inhibition of Class C β-Lactamases

    No full text
    To determine how imipenem inhibits the class C β-lactamase AmpC, the X-ray crystal structure of the acyl-enzyme complex was determined to a resolution of 1.80 Å. In the complex, the lactam carbonyl oxygen of imipenem has flipped by approximately 180° compared to its expected position; the electrophilic acyl center is thus displaced from the point of hydrolytic attack. This conformation resembles that of imipenem bound to the class A enzyme TEM-1 but is different from that of moxalactam bound to AmpC

    Phenylsulfonyl as a β Participating Group

    No full text
    • …
    corecore