40 research outputs found

    Characterization of early disease status in treatment-naive male paediatric patients with Fabry disease enrolled in a randomized clinical trial.

    Get PDF
    Trial designThis analysis characterizes the degree of early organ involvement in a cohort of oligo-symptomatic untreated young patients with Fabry disease enrolled in an ongoing randomized, open-label, parallel-group, phase 3B clinical trial.MethodsMales aged 5-18 years with complete α-galactosidase A deficiency, without symptoms of major organ damage, were enrolled in a phase 3B trial evaluating two doses of agalsidase beta. Baseline disease characteristics of 31 eligible patients (median age 12 years) were studied, including cellular globotriaosylceramide (GL-3) accumulation in skin (n = 31) and kidney biopsy (n = 6; median age 15 years; range 13-17 years), renal function, and glycolipid levels (plasma, urine).ResultsPlasma and urinary GL-3 levels were abnormal in 25 of 30 and 31 of 31 patients, respectively. Plasma lyso-GL-3 was elevated in all patients. GL-3 accumulation was documented in superficial skin capillary endothelial cells (23/31 patients) and deep vessel endothelial cells (23/29 patients). The mean glomerular filtration rate (GFR), measured by plasma disappearance of iohexol, was 118.1 mL/min/1.73 m(2) (range 90.4-161.0 mL/min/1.73 m(2)) and the median urinary albumin/creatinine ratio was 10 mg/g (range 4.0-27.0 mg/g). On electron microscopy, renal biopsy revealed GL-3 accumulation in all glomerular cell types (podocytes and parietal, endothelial, and mesangial cells), as well as in peritubular capillary and non-capillary endothelial, interstitial, vascular smooth muscle, and distal tubules/collecting duct cells. Lesions indicative of early Fabry arteriopathy and segmental effacement of podocyte foot processes were found in all 6 patients.ConclusionsThese data reveal that in this small cohort of children with Fabry disease, histological evidence of GL-3 accumulation, and cellular and vascular injury are present in renal tissues at very early stages of the disease, and are noted before onset of microalbuminuria and development of clinically significant renal events (e.g. reduced GFR). These data give additional support to the consideration of early initiation of enzyme replacement therapy, potentially improving long-term outcome.Trial registrationClinicalTrials.gov NCT00701415

    Myostatin and insulin-like growth factor I: potential therapeutic biomarkers for pompe disease.

    Get PDF
    OBJECTIVE: Myostatin and insulin-like growth factor 1 (IGF-1) are serum markers for muscle growth and regeneration. However, their value in the clinical monitoring of Pompe disease - a muscle glycogen storage disease - is not known. In order to evaluate their possible utility for disease monitoring, we assessed the levels of these serum markers in Pompe disease patients receiving enzyme replacement therapy (ERT). DESIGN: A case-control study that included 10 patients with Pompe disease and 10 gender- and age-matched non-Pompe disease control subjects was performed in a referral medical center. Average follow-up duration after ERT for Pompe disease patients was 11.7 months (range: 6-23 months). Measurements of serum myostatin, IGF-1, and creatine kinase levels were obtained, and examinations of muscle pathology were undertaken before and after ERT in the patient group. RESULTS: Compared with control subjects, Pompe disease patients prior to undergoing ERT had significantly lower serum IGF-1 levels (98.6 ng/ml vs. 307.9 ng/ml, p = 0.010) and lower myostatin levels that bordered on significance (1.38 ng/ml vs. 3.32 ng/ml, p = 0.075). After ERT, respective myostatin and IGF-1 levels in Pompe disease patients increased significantly by 129% (from 1.38 ng/ml to 3.16 ng/ml, p = 0.047) and 74% (from 98.6 ng/ml to 171.1 ng/ml, p = 0.013); these values fall within age-matched normal ranges. In contrast, myostatin and IGF-1 serum markers did not increase in age-matched controls. Follistatin, a control marker unrelated to muscle, increased in both Pompe disease patients and control subjects. At the same time, the percentage of muscle fibers containing intracytoplasmic vacuoles decreased from 80.0±26.4% to 31.6±45.3%. CONCLUSION: The increase in myostatin and IGF-1 levels in Pompe disease patients may reflect muscle regeneration after ERT. The role of these molecules as potential therapeutic biomarkers in Pompe disease and other neuromuscular diseases warrants further study

    Antibody formation and mannose-6-phosphate receptor expression impact the efficacy of muscle-specific transgene expression in murine Pompe disease

    No full text
    Abstract Background Lysosomal storage disorders such as Pompe disease can be more effectively treated, if immune tolerance to enzyme or gene replacement therapy can be achieved. Alternatively, immune responses against acid α-glucosidase (GAA) might be evaded in Pompe disease through muscle-specific expression of GAA with adeno-associated virus (AAV) vectors

    Clinical relevance of globotriaosylceramide accumulation in Fabry disease and the effect of agalsidase beta in affected tissues

    No full text
    Fabry disease (FD) is a rare lysosomal storage disorder, characterized by a reduction in α-galactosidase A enzyme activity and the progressive accumulation of globotriaosylceramide (GL3) and its metabolites in the cells of various organs. Agalsidase beta, an enzyme replacement therapy (ERT), is approved for use in patients with FD in Europe, Canada, Australia, South America, and Asia, and is the only ERT approved for use in the United States. In this review, we discuss the clinical relevance of GL3 accumulation, the effect of agalsidase beta on GL3 in target tissues, and the association between treatment-related tissue GL3 clearance and long-term structure, function, or clinical outcomes. Accumulation of GL3 in the kidney, heart, vasculature, neurons, skin, gastrointestinal tract and auditory system correlates to cellular damage and irreversible organ damage, as a result of sclerosis, fibrosis, apoptosis, inflammation, and endothelial dysfunction. Damage leads to renal dysfunction and end-stage renal disease; myocardial hypertrophy with heart failure and arrhythmias; ischemic stroke; neuropathic pain; skin lesions; intestinal ischemia and dysmotility; and hearing loss. Treatment with agalsidase beta is effective in substantially clearing GL3 in a range of cells from the tissues affected by FD. Agalsidase beta has also been shown to slow renal decline and lower the overall risk of clinical progression, demonstrating an indirect link between treatment-related GL3 clearance and stabilization of FD.publishedVersio

    Characterization of a canine model of glycogen storage disease type IIIa

    No full text
    SUMMARY Glycogen storage disease type IIIa (GSD IIIa) is an autosomal recessive disease caused by deficiency of glycogen debranching enzyme (GDE) in liver and muscle. The disorder is clinically heterogeneous and progressive, and there is no effective treatment. Previously, a naturally occurring dog model for this condition was identified in curly-coated retrievers (CCR). The affected dogs carry a frame-shift mutation in the GDE gene and have no detectable GDE activity in liver and muscle. We characterized in detail the disease expression and progression in eight dogs from age 2 to 16 months. Monthly blood biochemistry revealed elevated and gradually increasing serum alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) activities; serum creatine phosphokinase (CPK) activity exceeded normal range after 12 months. Analysis of tissue biopsy specimens at 4, 12 and 16 months revealed abnormally high glycogen contents in liver and muscle of all dogs. Fasting liver glycogen content increased from 4 months to 12 months, but dropped at 16 months possibly caused by extended fibrosis; muscle glycogen content continually increased with age. Light microscopy revealed significant glycogen accumulation in hepatocytes at all ages. Liver histology showed progressive, age-related fibrosis. In muscle, scattered cytoplasmic glycogen deposits were present in most cells at 4 months, but large, lake-like accumulation developed by 12 and 16 months. Disruption of the contractile apparatus and fraying of myofibrils was observed in muscle at 12 and 16 months by electron microscopy. In conclusion, the CCR dogs are an accurate model of GSD IIIa that will improve our understanding of the disease progression and allow opportunities to investigate treatment interventions

    Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors

    No full text
    GATA-family transcription factors are critical to the development of diverse tissues. In particular, GATA-4 has been implicated in formation of the vertebrate heart. As the mouse Gata-4 knock-out is early embryonic lethal because of a defect in ventral morphogenesis, the in vivo function of this factor in heart development remains unresolved. To search for a requirement for Gata4 in heart development, we created mice harboring a single amino acid replacement in GATA-4 that impairs its physical interaction with its presumptive cardiac cofactor FOG-2. Gata4(ki/ki) mice die just after embryonic day (E) 12.5 exhibiting features in common with Fog2(−/−) embryos as well as additional semilunar cardiac valve defects and a double-outlet right ventricle. These findings establish an intrinsic requirement for GATA-4 in heart development. We also infer that GATA-4 function is dependent on interaction with FOG-2 and, very likely, an additional FOG protein for distinct aspects of heart formation

    Representative microscopic images of muscle pathology for a patient with infantile-onset Pompe disease.

    No full text
    <p>(A) Tissue samples, obtained before ERT at age 10 days, processed in paraffin and stained with hematoxylin and eosin: numerous large empty intracytoplasmic vacuoles (indicated by arrows) are present in the muscle fibers. (B) Muscle tissue corresponding to same origin as in (A) (obtained before ERT at age 10 days) but processed in epoxy resin for high-resolution light microscopy (HRLM) and stained with periodic acid-Schiff/Richardson’s stain. Note the deep purple glycogen granules (arrow). (C) Few empty vacuoles (arrows) were observed in the muscle fibers (processed in paraffin and stained with hematoxylin and eosin) from the same patient after ERT for 6 months. (D) Muscle tissue obtained post-ERT corresponding to the same origin but processed in epoxy resin for HRLM and stained with periodic acid-Schiff/Richardson’s stain. Few purple glycogen granules (arrow) remained after ERT treatment.</p

    Demographic data and baseline biomarker levels for control subjects and Pompe disease patients. Data are expressed as mean (SD).

    No full text
    <p>Demographic data and baseline biomarker levels for control subjects and Pompe disease patients. Data are expressed as mean (SD).</p
    corecore