573 research outputs found
TRACK-a new algorithm and open-source tool for the analysis of pursuit-tracking sensorimotor integration processes.
In daily life, sensorimotor integration processes are fundamental for many cognitive operations. The pursuit-tracking paradigm is an ecological and valid paradigm to examine sensorimotor integration processes in a more complex environment than many established tasks that assess simple motor responses. However, the analysis of pursuit-tracking performance is complicated, and parameters quantified to examine performance are sometimes ambiguous regarding their interpretation. We introduce an open-source algorithm (TRACK) to calculate a new tracking error metric, the spatial error, based on the identification of the intended target position for the respective cursor position. The identification is based on assigning cursor and target direction changes to each other as key events, based on the assumptions of similarity and proximity. By applying our algorithm to pursuit-tracking data, beyond replication of known effects such as learning or practice effects, we show a higher precision of the spatial tracking error, i.e., it fits our behavioral data better than the temporal tracking error and thus provides new insights and parameters for the investigation of pursuit-tracking behavior. Our work provides an important step towards fully utilizing the potential of pursuit-tracking tasks for research on sensorimotor integration processes. [Abstract copyright: © 2023. The Author(s).
The neurophysiology of continuous action monitoring.
Monitoring actions is essential for goal-directed behavior. However, as opposed to short-lasting, and regularly reinstating monitoring functions, the neural processes underlying continuous action monitoring are poorly understood. We investigate this using a pursuit-tracking paradigm. We show that beta band activity likely maintains the sensorimotor program, while theta and alpha bands probably support attentional sampling and information gating, respectively. Alpha and beta band activity are most relevant during the initial tracking period, when sensorimotor calibrations are most intense. Theta band shifts from parietal to frontal cortices throughout tracking, likely reflecting a shift in the functional relevance from attentional sampling to action monitoring. This study shows that resource allocation mechanisms in prefrontal areas and stimulus-response mapping processes in the parietal cortex are crucial for adapting sensorimotor processes. It fills a knowledge gap in understanding the neural processes underlying action monitoring and suggests new directions for examining sensorimotor integration in more naturalistic experiments. [Abstract copyright: © 2023 The Author(s).
Editorial: The Psychophysiology of Action
What is action? What processes are involved in initiating, guiding, and evaluating the outcomes of action? Different research disciplines have dealt with these questions, and a huge amount of empirical and theoretical work has been conducted so far. However, only a few attempts have been made to integrate the different perspectives. We think it is time to bring together the fields of psychology, neuroscience, and movement/performance science, to stimulate the in-depth exchange of ideas and advance the âpsychophysiology of actionâ as a topic of interest, since psychophysiology and its methods provide a bridge to connect these areas. Further, we assume that to investigate actions in dynamical environments, corresponding measures are necessary that reflect the dynamics of movements; also, multivariate measures should be considered and the dynamics should be reflected in corresponding statistical parameters. Thus, the goal is to bring together theoretical and empirical research from several disciplines to foster the exchange of ideas and methods in an effort to investigate the dynamical role of movement in cognition. Therefore, we invited authors to submit research articles targeting the understanding of action across theories and disciplines
ADHD patients fail to maintain task goals in face of subliminally and consciously induced cognitive conflicts
Background. Attention deficit hyperactivity disorder (ADHD) patients have been reported to display deficits in action control processes. While it is known that subliminally and consciously induced conflicts interact and conjointly modulate action control in healthy subjects, this has never been investigated for ADHD.
Method. We investigated the (potential) interaction of subliminally and consciously triggered response conflicts in children with ADHD and matched healthy controls using neuropsychological methods (event-related potentials; ERPs) to identify the involved cognitive sub-processes.
Results. Unlike healthy controls, ADHD patients showed no interaction of subliminally and consciously triggered response conflicts. Instead, they only showed additive effects as their behavioural performance (accuracy) was equally impaired by each conflict and they showed no signs of task-goal shielding even in cases of low conflict load. Of note, this difference between ADHD and controls was not rooted in early bottom-up attentional stimulus processing as reflected by the P1 and N1 ERPs. Instead, ADHD showed either no or reversed modulations of conflict-related processes and response selection as reflected by the N2 and P3 ERPs.
Conclusion. There are fundamental differences in the architecture of cognitive control which might be of use for future diagnostic procedures. Unlike healthy controls, ADHD patients do not seem to be endowed with a threshold which allows them to maintain high behavioural performance in the face of low conflict load. ADHD patients seem to lack sufficient top-down attentional resources to maintain correct response selection in the face of conflicts by shielding the response selection process from response tendencies evoked by any kind of distractor
The downsides of cognitive enhancement
Action Contro
Recommended from our members
Experiences of health care transition voiced by young adults with type 1 diabetes: a qualitative study
Objective: This qualitative study aimed to explore the experience of transition from pediatric to adult diabetes care reported by posttransition emerging adults with type 1 diabetes (T1D), with a focus on preparation for the actual transfer in care. Methods: Twenty-six T1D emerging adults (mean age 26.2±2.5 years) receiving adult diabetes care at a single center participated in five focus groups stratified by two levels of current glycemic control. A multidisciplinary team coded transcripts and conducted thematic analysis. Results: Four key themes on the process of transfer to adult care emerged from a thematic analysis: 1) nonpurposeful transition (patients reported a lack of transition preparation by pediatric providers for the transfer to adult diabetes care); 2) vulnerability in the college years (patients conveyed periods of loss to follow-up during college and described health risks and diabetes management challenges specific to the college years that were inadequately addressed by pediatric or adult providers); 3) unexpected differences between pediatric and adult health care systems (patients were surprised by the different feel of adult diabetes care, especially with regards to an increased focus on diabetes complications); and 4) patientsâ wish list for improving the transition process (patients recommended enhanced pediatric transition counseling, implementation of adult clinic orientation programs, and peer support for transitioning patients). Conclusion: Our findings identify modifiable deficiencies in the T1D transition process and underscore the importance of a planned transition with enhanced preparation by pediatric clinics as well as developmentally tailored patient orientation in the adult clinic setting
Response Monitoring in De Novo Patients with Parkinson's Disease
BACKGROUND: Parkinson's disease (PD) is accompanied by dysfunctions in a variety of cognitive processes. One of these is error processing, which depends upon phasic decreases of medial prefrontal dopaminergic activity. Until now, there is no study evaluating these processes in newly diagnosed, untreated patients with PD ("de novo PD"). METHODOLOGY/PRINCIPAL FINDINGS: Here we report large changes in performance monitoring processes using event-related potentials (ERPs) in de novo PD-patients. The results suggest that increases in medial frontal dopaminergic activity after an error (Ne) are decreased, relative to age-matched controls. In contrast, neurophysiological processes reflecting general motor response monitoring (Nc) are enhanced in de novo patients. CONCLUSIONS/SIGNIFICANCE: It may be hypothesized that the Nc-increase is at costs of dopaminergic activity after an error; on a functional level errors may not always be detected and correct responses sometimes be misinterpreted as errors. This pattern differs from studies examining patients with a longer history of PD and may reflect compensatory processes, frequently occurring in pre-manifest stages of PD. From a clinical point of view the clearly attenuated Ne in the de novo PD patients may prove a useful additional tool for the early diagnosis of basal ganglia dysfunction in PD
- âŠ