917 research outputs found
New exact treatment of the perturbed Coulomb interactions
A novel method for the exact solvability of quantum systems is discussed and
used to obtain closed analytical expressions in arbitrary dimensions for the
exact solutions of the hydrogenic atom in the external potential , which is based on the recently introduced supersymmetric
perturbation theory.Comment: 6 pages article in LaTEX (uses standard article.sty). No Figures.
Please check "http://www1.gantep.edu.tr/~ozer/" for other studies of Nuclear
Physics Group at University of Gaziante
Electron Wave Filters from Inverse Scattering Theory
Semiconductor heterostructures with prescribed energy dependence of the
transmittance can be designed by combining: {\em a)} Pad\'e approximant
reconstruction of the S-matrix; {\em b)} inverse scattering theory for
Schro\"dinger's equation; {\em c)} a unitary transformation which takes into
account the variable mass effects. The resultant continuous concentration
profile can be digitized into an easily realizable rectangular-wells structure.
For illustration, we give the specifications of a 2 narrow band-pass 12 layer
filter with the high energy peak more than {\em twice
narrower} than the other.Comment: 4 pages, Revtex with one eps figur
Proof of the cases of the Lieb-Seiringer formulation of the Bessis-Moussa-Villani conjecture
It is shown that the polynomial has
nonnegative coefficients when and A and B are any two complex
positive semidefinite matrices with arbitrary . This proofs a
general nontrivial case of the Lieb-Seiringer formulation of the
Bessis-Moussa-Villani conjecture which is a long standing problem in
theoretical physics.Comment: 5 pages; typos corrected; accepted for publication in Journal of
Statistical Physic
Universal analytic properties of noise. Introducing the J-Matrix formalism
We propose a new method in the spectral analysis of noisy time-series data
for damped oscillators. From the Jacobi three terms recursive relation for the
denominators of the Pad\'e Approximations built on the well-known Z-transform
of an infinite time-series, we build an Hilbert space operator, a J-Operator,
where each bound state (inside the unit circle in the complex plane) is simply
associated to one damped oscillator while the continuous spectrum of the
J-Operator, which lies on the unit circle itself, is shown to represent the
noise. Signal and noise are thus clearly separated in the complex plane. For a
finite time series of length 2N, the J-operator is replaced by a finite order
J-Matrix J_N, having N eigenvalues which are time reversal covariant. Different
classes of input noise, such as blank (white and uniform), Gaussian and pink,
are discussed in detail, the J-Matrix formalism allowing us to efficiently
calculate hundreds of poles of the Z-transform. Evidence of a universal
behaviour in the final statistical distribution of the associated poles and
zeros of the Z-transform is shown. In particular the poles and zeros tend, when
the length of the time series goes to infinity, to a uniform angular
distribution on the unit circle. Therefore at finite order, the roots of unity
in the complex plane appear to be noise attractors. We show that the
Z-transform presents the exceptional feature of allowing lossless undersampling
and how to make use of this property. A few basic examples are given to suggest
the power of the proposed method.Comment: 14 pages, 8 figure
Mycobacterium ulcerans disease (Buruli ulcer) in Mali, a new potential African endemic country
International audienc
Lyashko-Looijenga morphisms and submaximal factorisations of a Coxeter element
When W is a finite reflection group, the noncrossing partition lattice NCP_W
of type W is a rich combinatorial object, extending the notion of noncrossing
partitions of an n-gon. A formula (for which the only known proofs are
case-by-case) expresses the number of multichains of a given length in NCP_W as
a generalised Fuss-Catalan number, depending on the invariant degrees of W. We
describe how to understand some specifications of this formula in a case-free
way, using an interpretation of the chains of NCP_W as fibers of a
Lyashko-Looijenga covering (LL), constructed from the geometry of the
discriminant hypersurface of W. We study algebraically the map LL, describing
the factorisations of its discriminant and its Jacobian. As byproducts, we
generalise a formula stated by K. Saito for real reflection groups, and we
deduce new enumeration formulas for certain factorisations of a Coxeter element
of W.Comment: 18 pages. Version 2 : corrected typos and improved presentation.
Version 3 : corrected typos, added illustrated example. To appear in Journal
of Algebraic Combinatoric
Further implications of the Bessis-Moussa-Villani conjecture
We find further implications of the BMV conjecture, which states that for
hermitian matrices A and B, the function Tr exp(A - t B) is the Laplace
transform of a positive measure.Comment: LaTeX, 8 page
Yang-Lee Zeros of the Ising model on Random Graphs of Non Planar Topology
We obtain in a closed form the 1/N^2 contribution to the free energy of the
two Hermitian N\times N random matrix model with non symmetric quartic
potential. From this result, we calculate numerically the Yang-Lee zeros of the
2D Ising model on dynamical random graphs with the topology of a torus up to
n=16 vertices. They are found to be located on the unit circle on the complex
fugacity plane. In order to include contributions of even higher topologies we
calculated analytically the nonperturbative (sum over all genus) partition
function of the model Z_n = \sum_{h=0}^{\infty} \frac{Z_n^{(h)}}{N^{2h}} for
the special cases of N=1,2 and graphs with n\le 20 vertices. Once again the
Yang-Lee zeros are shown numerically to lie on the unit circle on the complex
fugacity plane. Our results thus generalize previous numerical results on
random graphs by going beyond the planar approximation and strongly indicate
that there might be a generalization of the Lee-Yang circle theorem for
dynamical random graphs.Comment: 19 pages, 7 figures ,1 reference and a note added ,To Appear in
Nucl.Phys
- âŠ