33 research outputs found

    Multisensor Out Of Sequence Data Fusion for Estimating the State of Discrete Control Systems

    Get PDF
    The fusion center of a complex control system estimates its state with the information provided by different sensors. Physically distributed sensors, communication networks, pre-processing algorithms, multitasking, etc, introduce non-systematic delays in the arrival of information to the fusion center, making the information available out-of-sequence (OOS). For real-time control systems, the state has to be efficiently estimated with all the information received so far. So, several solutions of the OOS problem for dynamic multiple-input multiple-output (MIMO) discrete control systems traditionally solved by the Kalman filter (KF) have been proposed recently. This paper presents two new streamlined algorithms for the linear and non-linear case. IFAsyn, the linear algorithm, is equivalent to other optimal solutions but more general, efficient and easy to implement. EIFAsyn, the nonlinear one, is a new solution of the OOS problem in the extended KF (EKF) framework

    Efficient speed advisories for multi-stage-metering arrival management

    Full text link
    This paper presents a methodology and algorithm for Air Traffic Control (ATC) to efficiently achieve schedules arrival times through speed control in the presence of uncertainty. The methodology does not assume the availability of airborne time of arrival control and can therefore be applied to legacy aircraft. The speed advisories are calculated in a manner that allows for sufficient control margin to, if required, adjust the aircraft's trajectory at a later stage to correct for estimated arrival time drift at the lowest impact to efficiency. The methodology is therefore envisioned to prevent major last-minute interventions and instead assists ATC in allowing more continuous descent approaches to be conducted by aircraft leading to more efficient operations

    Correction of systematic errors in Wide Area Multilateration

    Get PDF
    This work presents a method to estimate and correct slow time-dependent position errors due to non perfect ground station synchronization and tropospheric propagation. It uses opportunity traffic emissions, i.e. signals transmitted from the aircrafts within the coverage zone. This method is used to overcome the difficulty of installing reference beacons simultaneously visible by all the base stations in a given Wide Area Multilateration (WAM) system

    Simulation Model for Sea Clutter in Airborne Radars

    Get PDF
    This paper presents the architecture and the methods used to dynamically simulate the sea backscatter of an airborne radar operating in a medium repetition frequency mode (MPRF). It offers a method of generating a sea backscatter signal which fulfills the intensity statistics of real clutter in time domain, spatial correlation and local Doppler spectrum of real data. Three antenna channels (sum, guard and difference) and their cross-correlation properties are simulated. The objective of this clutter generator is to serve as the signal source for the simulation of complex airborne pulsed radar signal processor

    Trajectory Reconstruction Techniques for Evaluation of ATC Systems

    Get PDF
    This paper is focused on trajectory reconstruction techniques for evaluating ATC systems, using real data of recorded opportunity traffic. We analyze different alternatives for this problem, from traditional interpolation approaches based on curve fitting to our proposed schemes based on modeling regular motion patterns with optimal smoothers. The extraction of trajectory features such as motion type (or mode of flight), maneuvers profile, geometric parameters, etc., allows a more accurate computation of the curve and the detailed evaluation of the data processors used in the ATC centre. Different alternatives will be compared with some performance results obtained with simulated and real data sets

    Desing of an Airport Surface Routing Evaluation Tool

    Full text link
    There are many studies related with airport surface routing algorithms, based on different approaches and with different evaluation methods and metrics. So, the need of performing a balanced analysis and comparison using a common framework is evident. This paper presents an implementation of an evaluation tool for airport surface routing algorithms. The routing evaluation tool presented here is based in three basic pillars composed by the airport model, the model and generation of traffic and a comprehensive figure of merit function. The paper includes some example evaluations performed over Barajas Airport with representative traffic samples using several simple routing methods

    Understanding time-drift for different aircraft descent guidance strategies

    Get PDF
    In this paper the effect of different aircraft automated descent guidance strategies on fuel burn and the temporal predictability of the executed trajectory is investigated. The paper aims to provide an understanding of how airborne automation can be permitted by Air Traffic Control to remain in control of the descent in the presence of disturbances while providing sufficient predictability. Simulations have been performed investigating different guidance strategies. While each strategy has its advantages and disadvantages, results indicate that improved temporal predictability comes at the cost of additional fuel burn and loss of predictability in other dimensions of the trajectory

    Automatic Adaptation of Airport Surface Surveillance to Sensor Quality

    Get PDF
    This paper describes a novel method to enhance current airport surveillance systems used in Advanced Surveillance Monitoring Guidance and Control Systems (A-SMGCS). The proposed method allows for the automatic calibration of measurement models and enhanced detection of nonideal situations, increasing surveillance products integrity. It is based on the definition of a set of observables from the surveillance processing chain and a rule based expert system aimed to change the data processing method

    Correction of propagation errors in wide area multilateration systems

    Full text link
    Methods to estimate and correct slow time-variant position errors due to bad synchronization and propagation in Wide Area Multilateration Systems (WAM) are presented. The procedure does not use emitters at known locations. Instead it uses opportunity traffic emissions (from the aircraft present in coverage). The need for these methods came from the difficulty to install reference beacons that can be seen simultaneously by all WAM base stations

    Designing a Cockpit Functionalities Architecture for Trajectory Based Operations

    Get PDF
    Trajectory Based Operations (TBO) will require new procedures and systems to achieve a suitable automation of air traffic operations. Procedures and systems for automated operations are closely related and therefore frequently they need to be modeled in a combined way. Our group is currently employing recent agent-oriented methodological approaches to obtain conceptual models about TBO scenarios. Conceptual models define roles of air traffic entities as well as their interactions together with a detailed description of the entities’ architecture and dynamic behaviour. In this paper we present a cockpit functionality architecture built upon a methodological analysis and design of a TBO scenario as a multi-agent system. The proposed design has the advantage of mapping to an executable model for analytical simulation of TBO concepts and its modular architecture allows for a progressive integration of additional underlying models with specific functionalities
    corecore