525 research outputs found
Curve tropicali
In geometria tropicale le varietĂ sono definite classicamente come ideali nell'anello dei polinomi. L'obiettivo della tesi consiste nel dare una definizione di varietĂ mediante carte ed incollamenti e dare una descrizione dettaglaita delle varietĂ compatte di dimensione uno
Simulation of microalgal growth in a continuous photobioreactor with sedimentation and partial biomass recycling
Microalgae are considered as promising feedstocks for the third generation of biofuels. They are autotrophic organisms with high growth rate and can stock an enormous quantity of lipids (about 20 \u2013 40% of their dried cellular weight). This work was aimed at studying the cultivation of Scenedesmus obliquus in a
two-stage system composed of a photobioreactor and a settler to concentrate and partially recycle the biomass as a way to enhance the microalgae cellular productivity. It was attempted to specify by simulation and experimental data a relationship between the recycling rate, kinetic parameters of microalgal growth and photobioreactor operating conditions. Scenedesmus obliquus cells were cultivated in a lab-scale flat-plate reactor, homogenized by aeration, and running in continuous flow with a residence time of 1.66 day. Experimental data for the microalgal growth were used in a semi-empirical simulation model. The best results were obtained for Fw = 0.2FI , when R = 1 and kd = 0 and 0.05 day-1, with the biomass production in the reactor varying between 8 g L -1 and 14 g L-1, respectively. The mathematical model fitted to the microalgal growth experimental data was appropriate for predicting the efficiency of the reactor in producing Scenedesmus obliquus cells, establishing a relation between cellular productivity and the minimum recycling rate that must be used in the system
Multiphysics Finite\u2013Element Modelling of an All\u2013Vanadium Redox Flow Battery for Stationary Energy Storage
All-Vanadium Redox Flow Batteries (VRFBs) are emerging as a novel technology for stationary energy storage. Numerical models are useful for exploring the potential performance of such devices, optimizing the structure and operating condition of cell stacks, and studying its interfacing to the electrical grid. A one-dimensional steady-state multiphysics model of a single VRFB, including mass, charge and momentum transport and conservation, and coupled to a kinetic model for electrochemical reactions, is first presented. This model is then extended, including reservoir equations, in order to simulate the VRFB charge and discharge dynamics. These multiphysics models are discretized by the finite element method in a commercial software package (COMSOL). Numerical results of both static and dynamic 1D models are compared to those from 2D models, with the same parameters, showing good agreement. This motivates the use of reduced models for a more efficient system simulation
Production of Lipid Microparticles Magnetically Active by a Supercritical Fluid-Based Process
An original technique, based on supercriticalCO2and on the particles from gas saturated solution (PGSS) micronization method, was developed to obtain magnetically active lipid microparticles. Magnetite nanoparticles (MNPs) were encapsulated into triestearin and phosphatidylcholine mixtures to increase their biocompatibility for future applications in the fields of biomedical diagnostics and therapeutic medications. The lipid particles produced were characterized to determine size and size distribution, and to confirm the encapsulation of MNP. The mean size was in the range of 200–800 nm. The possibility to drive these magnetically active particles by an external magnet was demonstrated in a simple apparatus simulating a vessel of the circulatory system. The results obtained indicate that the modified PGSS technique is suitable to produce lipid microparticles with magnetic activity for possible use in medical applications
Anticipatory and pre-planned actions: A comparison between young soccer players and swimmers
The present study investigated whether a difference exists in reactive and proactive control for sport considered open or closed skills dominated. Sixteen young (11-12 years) athletes (eight soccer players and eight swimmers) were asked to be engaged into two games competitions that required either a reactive and a proactive type of control. By means of kinematic (i.e. movement time and duration) and dynamic analysis through the force platform (i.e. Anticipatory Postural Adjustments, APAs), we evaluated the level of ability and stability in reacting and anticipating actions. Results indicated that soccer players outperformed swimmers by showing higher stability and a smaller number of falls during the competition where proactive control was mainly required. Soccer players were able to reach that result by anticipating actions through well-modulated APAs. On the contrary, during the competition where reactive control was mainly required, performances were comparable between groups. Therefore, the development of specific action control is already established at 11-12 years of age and is enhanced by the training specificity
Bioethanol from Microalgal Biomass: A Promising Approach in Biorefinery
Abstract The development of new technologies which increase the production of biofuel without directly compete with food production is required. Microalgal biomass has recently been in the highlight. The role of this biomass is here discussed within the concept of biorefinery and industrial sustainability of bioethanol production. The process of cultivation in order to accumulate around 50% of carbohydrates in the biomass (dry weight) and the importance of water and nutrient recycling are reviewed. Saccharification of biomass using enzymes or acids and alternative processes such as hydrothermal liquefaction and flash hydrolysis are addressed. Since the main monosaccharide in microalgal biomass is glucose, high rates of hydrolysis and fermentation were, generally, achieved (more than 80% of the efficiency as a sum of these two processes). Anaerobic digestion to treat vinasse and the recycling of CO2 from the ethanolic fermentation and biogas could increase the process sustainability. Alternative techniques for the concentration of bioethanol from fermentation broth and for the optimization of fuel transportation are mentioned. Finally, the advantage of using microalgae rather than other sources is estimated with reference to the production rate, even though the cultivation costs are still high
Light intensity affects the mixotrophic carbon exploitation in Chlorella protothecoides: consequences on microalgae-bacteria based wastewater treatment.
Abstract
Microalgal-bacteria consortia application on wastewater treatment has been widely studied, but a deeper comprehension of consortium interactions is still lacking. In particular, mixotrophic exploitation of organic compounds by microalgae affects gas (CO2 and O2) exchange between microalgae and bacteria, but it is not clear how environmental conditions may regulate algal metabolism. Using a respirometric-based protocol, we evaluated the combined effect of organic carbon and light intensity on oxygen production and consumption by C. protothecoides, and found that the chemical oxygen demand (COD) was not consumed when incident light increased. Batch experiments under different incident lights, with C. protothecoides alone and in consortium with activated sludge bacteria, confirmed the results obtained by respirometry. Continuous system experiments testing the combined effects of light intensity and residence time confirmed that, under limiting light, mixotrophy is preferred by C. protothecoides, and the nutrient (COD, N, P) removal capability of the consortium is enhanced
Muscle belly gearing positively affects the force-velocity and power-velocity relationships during explosive dynamic contractions
Changes in muscle shape could play an important role during contraction allowing to circumvent some limits imposed by the fascicle force-velocity (F-V) and power-velocity (P-V) relationships. Indeed, during low-force high-velocity contractions, muscle belly shortening velocity could exceed muscle fascicles shortening velocity, allowing the muscles to operate at higher F-V and P-V potentials (i.e., at a higher fraction of maximal force/power in accordance to the F-V and P-V relationships). By using an ultrafast ultrasound, we investigated the role of muscle shape changes (vastus lateralis) in determining belly gearing (muscle belly velocity/fascicle velocity) and the explosive torque during explosive dynamic contractions (EDC) at angular accelerations ranging from 1000 to 4000°.s-2. By means of ultrasound and dynamometric data, the F-V and P-V relationships both for fascicles and for the muscle belly were assessed. During EDC, fascicle velocity, belly velocity, belly gearing, and knee extensors torque data were analysed from 0 to 150 ms after torque onset; the fascicles and belly F-V and P-V potentials were thus calculated for each EDC. Absolute torque decreased as a function of angular acceleration (from 80 to 71 Nm, for EDC at 1000 and 4000°.s-1, respectively), whereas fascicle velocity and belly velocity increased with angular acceleration (P < 0.001). Belly gearing increased from 1.11 to 1.23 (or EDC at 1000 and 4000°.s-1, respectively) and was positively corelated with the changes in muscle thickness and pennation angle (the changes in latter two equally contributing to belly gearing changes). For the same amount of muscle's mechanical output (force or power), the fascicles operated at higher F-V and P-V potential than the muscle belly (e.g., P-V potential from 0.70 to 0.56 for fascicles and from 0.65 to 0.41 for the muscle belly, respectively). The present results experimentally demonstrate that belly gearing could play an important role during explosive contractions, accommodating the largest part of changes in contraction velocity and allowing the fascicle to operate at higher F-V and P-V potentials
Postural adjustments to self-triggered perturbations under conditions of changes in body orientation
We studied anticipatory and compensatory postural adjustments (APAs and CPAs) associated with self-triggered postural perturbations in conditions with changes in the initial body orientation. In particular, we were testing hypotheses on adjustments in the reciprocal and coactivation commands, role of proximal vs. distal muscles, and correlations between changes in indices of APAs and CPAs. Healthy young participants stood on a board with full support or reduced support area and held a standard load in the extended arms. They released the load in a self-paced manned with a standard small-amplitude arm movement. Electromyograms of 12 muscles were recorded and used to compute reciprocal and coactivation indices between three muscle pairs on both sides of the body. The subject's body was oriented toward one of three targets: straight ahead, 60° to the left, and 60° to the right. Body orientation has stronger effects on proximal muscle pairs compared to distal muscles. It led to more consistent changes in the reciprocal command compared to the coactivation command. Indices of APAs and CPAs showed positive correlations across conditions. We conclude that the earlier suggested hierarchical relations between the reciprocal and coactivation command could be task-specific. Predominance of negative or positive correlations between APA and CPA indices could also be task-specific
- …