2,438 research outputs found

    Thermodynamic phases and mesonic fluctuations in a chiral nucleon-meson model

    Full text link
    Studies of the QCD phase diagram must properly include nucleonic degrees of freedom and their thermodynamics in the range of baryon chemical potentials characteristic of nuclear matter. A useful framework for incorporating relevant nuclear physics constraints in this context is a chiral nucleon-meson effective Lagrangian. In the present paper, such a chiral nucleon-meson model is extended with systematic inclusion of mesonic fluctuations using the functional renormalization group approach. The resulting description of the nuclear liquid-gas phase transition shows a remarkable agreement with three-loop calculations based on in-medium chiral effective field theory. No signs of a chiral first-order phase transition and its critical endpoint are found in the region of applicability of the model, at least up to twice the density of normal nuclear matter and at temperatures T<100 MeV. Fluctuations close to the critical point of the first-order liquid-gas transition are also examined with a detailed study of the chiral susceptibility.Comment: 10 pages, 11 figures; references added, discussions enlarge

    The Effect of Fluctuations on the QCD Critical Point in a Finite Volume

    Full text link
    We investigate the effect of a finite volume on the critical behavior of the theory of the strong interaction (QCD) by means of a quark-meson model for two quark flavors. In particular, we analyze the effect of a finite volume on the location of the critical point in the phase diagram existing in our model. In our analysis, we take into account the effect of long-range fluctuations with the aid of renormalization group techniques. We find that these quantum and thermal fluctuations, absent in mean-field studies, play an import role for the dynamics in a finite volume. We show that the critical point is shifted towards smaller temperatures and larger values of the quark chemical potential if the volume size is decreased. This behavior persists for antiperiodic as well as periodic boundary conditions for the quark fields as used in many lattice QCD simulations.Comment: 9 pages, 2 figures, 1 tabl

    The inward bulge type buckling of monocoque cylinders I : calculation of the effect upon the buckling stress of a compressive force, a nonlinear direct stress distribution, and a shear force

    Get PDF
    In the present part I of a series of reports on the inward bulge type buckling of monocoque cylinders the buckling load in combined bending and compression is first derived. Next the reduction in the buckling load because of a nonlinear direct stress distribution is determined. In experiments nonlinearity may result from an inadequate stiffness of the end attachments in actual airplanes from the existence of concentrated loads or cut-outs. The effect of a shearing force upon the critical load is investigated through an analysis of the results of tests carried out at GALCIT with 55 reinforced monocoque cylinders. Finally, a simple criterion of general instability is presented in the form of a buckling inequality which should be helpful to the designer of a monocoque in determining the sizes of the rings required for excluding the possibility of inward bulge type buckling

    Second-order and Fluctuation-induced First-order Phase Transitions with Functional Renormalization Group Equations

    Full text link
    We investigate phase transitions in scalar field theories using the functional renormalization group (RG) equation. We analyze a system with U(2)xU(2) symmetry, in which there is a parameter λ2\lambda_2 that controls the strength of the first-order phase transition driven by fluctuations. In the limit of \lambda_2\to0,theU(2)xU(2)theoryisreducedtoanO(8)scalartheorythatexhibitsasecond−orderphasetransitioninthreedimensions.Wedevelopanewinsightfortheunderstandingofthefluctuation−inducedfirst−orderphasetransitionasasmoothcontinuationfromthestandardRGflowintheO(8)system.InourviewfromtheRGflowdiagramoncouplingparameterspace,theregionthatfavorsthefirst−ordertransitionemergesfromtheunphysicalregiontothephysicaloneasλ2increasesfromzero.WegivethisinterpretationbasedontheTaylorexpansionofthefunctionalRGequationsuptothefourthorderintermsofthefield,whichencompassesthe, the U(2)xU(2) theory is reduced to an O(8) scalar theory that exhibits a second-order phase transition in three dimensions. We develop a new insight for the understanding of the fluctuation-induced first-order phase transition as a smooth continuation from the standard RG flow in the O(8) system. In our view from the RG flow diagram on coupling parameter space, the region that favors the first-order transition emerges from the unphysical region to the physical one as \lambda_2 increases from zero. We give this interpretation based on the Taylor expansion of the functional RG equations up to the fourth order in terms of the field, which encompasses the \epsilon$-expansion results. We compare results from the expansion and from the full numerical calculation and find that the fourth-order expansion is only of qualitative use and that the sixth-order expansion improves the quantitative agreement.Comment: 15 pages, 10 figures, major revision; discussions on O(N) models reduced, a summary section added after Introduction, references added; to appear in PR
    • …
    corecore