NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE

No. 1435

STRESSES IN AND GENERAL INSTABIIITY OF MONOCOQUE CYITNDERS WITH CUTOUTS V - CALCULATION OF THE STRESSES IN CYLINDERS

- WITH SIDE CUTOUT

By N. J. Hoff and Bertram Klein
Polytechnic Institute of Brooklyn

Washington
January 1948

FOR RFFFRENCE

LIBRARY COP

\therefore :

TECHNICAI NOTE NO. 1435

SIRESSES IN AND GENBRAL IIYSIABIITTYY OF MONOCOGUE CYITNDERS WITH CUTOUTS
V - CAICULATION OF THE STRESSES IN CYITNDFRS
WIMH SIDE CUTOUT
By N. J. Hoff and Bertrem Klein

SUMMARY

Stresses were calculated by a numerical method in three reinforced monocoque cylinders subjected to pure bending. The cylinders were of circular cross section and were reinforced with 8 rings and either 8 or 16 stringers. There was a cutout on one side of each cylinder located symmetrically to the neutral plane and extending over $45^{\circ}, 90^{\circ}$, $01^{\circ} 135^{\circ}$. Satisfactory agreement was found between stresses calculated and those measured in part IV in the present series of investigations.

TMIRODUCTION

In analytical investigations the reinforced monocoque cylinder is almost invariakly assumed to be of constant section and reinforced with evenly spacsd stringers and rings of constent crose-sectionsl properties. In reality, actual aimplane structures often have openings for aoors, windows, and so forth, and are reinforced locally near points of application of concentrated loads. It is believed that the stress problem of such nonuniform structures is best approached by numerical methods.

In a series of investigations carmied out at the Polytechnic Institute of Brooly yn Aeronautical Laboratories en effort was made to apply Southweli's relaxation method (reference I) to the calculation of the stresses in reinforced monocoque structures. Procedures were developed for reinforced flat and curved sheets (references 2 and 3) as well as for Puselage frames (references 4 and 5). Finally, numericel methods were used to determine the stresses in a reinforced monocoque cyInder having a symmetric cutout on the compression side (reference 6). The results obtained were in satisfactory agreement with experiments carried out earlier, which are described in reference 7. The present report deals with the problem of the strese diatribution in a reinforced monocoque cylinder having a sjde cutout and subjected to purs bending. The results of the calculations are compared with the experiments described. in reference 8.

In the first step of the procedure the structure is divided into elements, and the elastic properties of the elements are determined. . In the present problem a sheet panel with its bordering segments of stringers and rings was chosen as the element of the reinforced monocoque cylinder. When the loads are applied to the cylinder, the comers of the panels undergo, in general, displacements in aribitrary directions. For the purposes of this celculation the displacements are resolved into axial (in the direction of the axis of the cylinder), tangential (in the direction of the tangent to the ring), and radial components (in the direction of the redius of the ring). At the same time, the comers are, in general, rotated about axes of arbitrary direction, and this rotation is resolved into rotations about the axial, tangential, and radial directions.

In the so-celled unit problem it is assumed that the four corners of the panel are rigidiy clamped to some imaginary rigid body to prevent both displacement and rotation. Then the clamps are released at one comer to permit displacement or rotation in one direction only, and a displacement (or rotation) of unit magnitude is undertaken in that particular direction. Next the reaction forcea and momenta caused by the displacement (or rotation) undertaken are calculated for all the four corners.

After all the wit probiems of the structure are solved, the results are combined in what are termed the "operations tables." These tables are a systematic presentation of the reactions at all the corner points corresponding to unit displacements of the cormer points. It is then required. to find a combination of all the displacement (and rotation) components corresponding to zero resultant force and moment at each corner point at which no external load is applied and to force and moment resultants equal and opposite to the loads at the pointa of application of the external loads. According to Southwell's suggestion, this combination of displacements is found by systematic step-by-step approximations. At the Polytechnic Institute of Brooklyn Aeronautical Laboratories such solutions by step-by-step approximations have been established for reinforced panel problems (reierences 2 and 3), but when the asme epproach was tried for the case of monocoque cylinders having symotric out-outs and subjected to pure bending, the number of steps noeded became almost prohibitive. On the other hand, the solution by matrix methods of the systom of linear equations represented by the operations tables together with the applied loada was poseible with a reasonable expenditure of work.

In the present report, the displacements are calculated from the operations tables by means of a alightly modified version of Crout ${ }^{8}$ method of solving matrix equations. (See reference 9.) The number of unknowns is 34,36 , and 30 in the case of the cylinders having $45^{\circ}, 90^{\circ}$, and 135° cutouts, reapectively. The numerical part of the work was campied out on semiautomatic electric calculating machines, and 10 digits were kept throughout the calculations. As an approximate rule, it may
be stated that matrices of the kind encountered in this work can be solved by an experienced calculator at the rate of 2 hours for each unknown quantity. This estimate does not allow for mistakes.

Once the displacements are known, the stresses can be easily calculated with the aid of the solutions of the unit problems and elementary considerations. Complete numerical calculations were carried out for three cylinders of the experimental series described in reference 8. Satisfactory agreement was found between theory and experiment, as may be seen from the comparison shown in the figures of the present report.

The authors acknowledge their indebtedness to Mr. Bruno A. Boley for his help in the theoretical aspects of the problem and to Mr. John G. Pulos, who took part in the calculations. The work was carried out under the sponsorship and with the financial assistance of the National Advisory Committee for Aeronautics.

SYMBOLS

a
A.
$A, B, C, A^{8}, B^{2}, C^{8}$
E
G
I
M
In

Q torque acting on rigil end ring
r
$\hat{r n}, r$
R
t
$\hat{t t}, \hat{t r}, \hat{t n}$

N bending moment acting in plene of ring
distance betweon adjacent rings
cross-sectional area of stringer augmented by its effective width of curved sheet
rings of cylinder or quadrants of operations table Young's modulus shear modulus
length of ring segment between adjacent stringers externally applied bending moment acting on cylinder
ring influence coeficicient
radius of monocoque cylinder
ring influence coefficicients
radial shear force acting in plane of ring
thicmess of sheet covering
ring influence coefficients

T	tangential force acting in plane of ring
u	tangential displacement
\checkmark	radial displacement
$\boldsymbol{*}$	rotation
X	force acting in axial direction
Y	vertical shear force acting on rigid ring
$a_{t}, \alpha_{r}, \alpha_{n}$	coefficients used in calculation of forces and moments caused by shear flow existing in panel
$\Gamma=G t / 2$	
7	vertical downward translation of rigid ring
θ	rotation of rigid ring in its own plane
ξ	axial displacement
a	rotation of rigid ring about its horizontal diameter
$\Omega=G t a / 4 L$	

SIATEMENI OF PROBIEM AND ASSUMPITONS

The three cylinders for which calculations were carried out are shown in figure 1. They are Cylinders 35, 39, and 40 of the present series and are described in reference 8. A number of structural changes were assumed for the purpose of calculations in order to decrease the work required for the solution of the problem.

Fipure 2 shows the three cylinders in their modified forms. In reality, Cylinder 35 had 16 stringers, 7 of which were omitted in the simplified sotup. The cross-sectional areas of the stringers eliminated, however, were distributed evenly between the adjacent stringers that were left in the structure. Similerly, two rings were omitted from the complete portions of the cylinder and the cross section of one was added to the adjacent ring bordering the cutout and the other to the rigid end ring of the cylinder. At the same time the length of the field extending from the cutout to the end ring was assumed to be 9.6429 inches. This field length is li times the actual ring spacing and thus it is an intermediate value between the true distance from cutout to end ring and the actual ring spacing. It was not-considered advisable to use a
field length of three times the ring spacing in the calculations because long fields are weak in shear.

Cylinders 39 and 40 were built with only eight stringers. Consequently; changes in the structural arrangement were assumed only in connection with the rings. The changes were of the seme nature as in the case of cylinder 35.

As in previous work, the bending and torsional rigidities of the stringers were disregarded. The rings were considered resistant to bending in their own plane but weak in bending out of their plane as well as in torsion. The extensionsl and shearing rigidities of the rings were considered. The sheet panels were assumed to resist sioar only, and the shear stresses were assumed to be distributed uniformly. The resistance of the sheet to extension and compression was taken approximately into account by adding an effective width of sheet to the stringers. In the present calculations the total width of the sheet was considered effective, since the stresses were calculated for small loads when the sheet is in a nonbuckled state. An effective width of sheet equal to the width of the ring was added to the ring when ite crose-sectional properties were calculated. Because of these assumptions only the three displacement components as well as the rotation component about an axis. parailel to the axis of the cylinder need be taken into consideration. Rotations about the tangential and radial axes are not resisted by either the stringer or the ring.

The vertical plane of a transverse section through the middle of the cylinder was regarded as a fixed reference plane relative to which the rigid end ringa are tilted - and even twisted because of the asymmetric cutout - when the pure bending moments are applied to the end rings. The operations tables were set up for only one-quarter of the cylinder because the displacements in the four quarters are related by symmetry.

SEITING UP AND SOLVING THE OPERATIONS TABLES

A schematic arrangement showing the four quadrants of the operations tables for all three cylinders is given in table l. As a rule, each entry in the operations tables (see, for instance, quadrant A, table 2) represents the magnitude and the sign of the generalized force, indicated at the left end of the row in which it appears, caused by the generalized unit displacement indicated at the top of the colum. A generalized displacement is a displacement of the structure at a point in one of the directions of the axes, a rotation about one of these axes, or any combination of displacements and rotations of the structure at a group of points. A generalized force corresponding to a generalized displacement is the quantity - force, moment, or group of forces and moments - that gives the work done during the generalized displacement when multiplied by the generalized displacement. As was mentioned under STATEMENT OF PROBLEM

AND ASSUMPIIONS, the structure is considered to be rigidly clamped as regards every other generalized displacement when the effect of any one generalized unit displacement is sought.

The generalized forces in a reinforced monocoque cylinder caused by generalized unit displacements can be calculated when the solution of the so-called foum-panel problem is known. The solution was given in reference 6. It is given in a slightly more convenient form in figures 3 to 6 of the present paper. These figures show the forces and moments at each of the nine corner points that are caused by generalized mit displacements of the middle point. The expressions are given in a form auitable for calculations even when each stringer and ring segment has a different but constant section and each panel a different but constant thickness. When a panel is in a buckied state, a reduced value should be used for its effective shear modulus $G_{e f f}$. When a panel is absent, its shear modulus, or thickness, should be put equal to zero. The vaiues of the shear flow-force coefficients α_{t}, α_{r}, and α_{n}, as well as those of the influence coofficients $\hat{t t}, \hat{t r}, \hat{t n}, \widehat{Y r}, \ldots$, must be obtained from reference 5.

Figures 7 to 10 give the solution of the four-panel problem for the case in which the curvature is opposite to that shown in the preceding four figures. The celculations with which this report deals indicated the desirability of two such sets of diagrams in order to reduce the likelihood of numerical errors and errors of sign in the operations tables.

Because of the symmetry of both the structure and the loading with respect to the plane of a transverse section through the midale of the cylinder, displacements of corresponding points must be the same on ringe A and A^{\prime}, B and B^{\prime}, and C and C^{\prime}. (See fig. 2.) Moreover, the loading is antisymmetric with respect to the horizontal plene containing the axis of the cylinder. Hence, alsplacements of corresponding pointe on stringers 1 and 1', 2 and 2', and so forth, must be antisymmetric. Their absolute magnitudes are equal and their signs can be determined from the following rules, which take care of the peculiarities of the sign conventions adopted: axial and radial displacements are of opposite sign, tangential displacements and rotations are of the same sign on the upper and lower halves of the cylinder. These symmetry considerations permit a reduction in the number of displacement quantities to be entered in the operations tables. Of the total of $4 \times 48=192$ possible generalized basic displacements in the case of Cylinder 39, a total of 108 could be onitted outright; 35 more dieplacements were considered only indirectly, as is shown by means of the following two typical examples.

When point B4 - the point of intersection of ring B with stringer 4is moved in the positive axial direction, point $\mathrm{B}^{\prime \prime}$ must be moved the same distance in the negative axial direction because of the antisymetry.

This combination of displacements causes twice as much shear strain in the panel bounded by rings A and B and stringers 4 and 4^{1} as would be caused by the displacement of point B4 alone. Consequently, the forces and moments appearing because of the shear at points A4 and B4 will be doubled.

When point B_{4} is mored in the positive tangential direction, point B4' also must be moved the same distance in the tangential direction. Consequently, the shear strain in the panel bounded by rings A and B and stringers 4 and $4^{\prime \prime}$ is again subjected to the double amount of shesr strain just as in the case discussed previousiy. Moreover, segment 4-4' of ring B is rotated but not shortened, whereas in the case of a tangential motion of point $B 4$ alone a shortening also would take place. Consequently, 48 independent displacement quantities remain to be entered in the operations tables. This number is further reduced because of the end conditions. In the experiment the end ringe were heavy and were rigidly attached to heavy end plates. For this reason, in the theory the end rings were assumed perfectly rigid and points on the end rings were permitted to parificipate only in rigid body diaplacements. Thus $4 \times 4=16$ further individual generalized displacements are eliminated; and three rigid-body displacements are introduced - namely, a rotation a about the horizontal diameter, a rotation θ about the axis of the cylinder, and a vertical translation η of the end ring. Hence 35 unknown quantities remain.

When the pure bending moment is applied to the rigid end plate, the distribution of the forces to the stringers is not known. Obviously, it cannot be assumed according to the customary linear law because of the cutout in the structure. For this reason a rotation a of the end ring was specified rather than a bending moment, and the corresponding bending moment was calculated only after the forces in the stringers were determined from the operations table. Hence, the forces and moments corresponding In the operations tables to the specified rigid body displacement ω were known quantities and had to be considered as the load terms in the equations. They are given in the last colurm of quadrants B and D of table 2.

It will be noted that the last two rows in the operations tables are denoted ($1 / 2$)Y (one-half the vertical shear force acting upon the end ring) and ($1 / 2$) (Q / r) (one-half the torque acting upon the end ring divided by the radius). This choice of the quantities to be entered in the last two rows results in a symmetric operations table.

The linear equations represented by the operations'tables were then solved by a slightly modified version of Crout's method. In other words, the set of 34 displacement quantities causing forces and moments at ail the points equal and opposite to those given in the last colum of the operations tables (which are due to the specified rotation w) was determined. These forces and moments listed in the last colum are designated RHS to indicate right-hand-aide members. It should be noted that two of the displacement quantities listed are the remsining two
(unknown) rigid body displacements θ and η of the end ring. The generalized force corresponding to θ is a torque, that corresponding to η, a vertical shear force. Obviously, these two generalized displacements must be so chosen as to yield zero generalized forces when the externel load applied to the cylinder is a pure bending moment. These two requirements are represented by the last two rows of the operations tables.

Similar considerations can be advanced in the case of the other two oylinders. The operations table of Cylinder 40 having the 135° cutout differs from table 2 only in quadrant D. This quadrant is given in table 3. In the case of Cylinder 35 all four quadrants are different. They are shown in table 4. In quadrant A of table 4 the colums of the tangential displacement and the rotation of point Bl correspond to two unite each rather than to one. The doubling of these movements was undertaken in order to maintain the symmetry of the operations tables in spite of the assumptions regarding the simultaneous movements of points on the two sides of the horizontal plane of symmetry of the cylinder.

APPROXIMATE THEORY

Because of the great amount of work required for the solution of stress problems by the numerical method discussed, the possibility of using an approximate theory was investigated. The approximation amounted to neglecting ail influences except that of the axial displacements. Physically the structure corresponding to the approximate theory would have rigid rings. Moreover, these rings would have to be supported in their own plane to provide reactions, since the shear forces and the torque acting upon the rings are not canceled in the approximate calculations.

The operations tables of the approximate theory are identical with those portions of the operations tables (tables 2 to 4) that involve only axial forces and displacements.

PRESENTATION AND DISCUSSION OF RESUITS

The displacements calculated for a rotation ω of the ond rins amounting to 1×10^{-4} radian are presented in tables 5 to 7. The distortions of the rings corresponaing to an applied bending moment of 20,000 inch-pounds are show in figures 11 to 14 .

The axial strains caiculated from the displacements are plotted in figures 15 to 20 , which also contain experimental results taken from reference 8 as well as calculated values corresponding to the approximate theory. The agreement between theory and experiment is
satisfactory. The approximate theory is also in reasonable agreement with experiment in the complete portions of the cylinders. In the cutout portions the values calculated by the approximate theory are even slightly closer to the experimental points than the values obtained from the complete theory. The displacements calculated by the approximate theory are listed in table 8.

Figures 21 and 22 show the shear stresses in the sheet of the complete portions of the cylinders and the maximum bending stresses in the rings bordering the cutout. The absolute values of these stresses are very small. Moreover, they decrease in an oscillatory manner from the region of the neutral axis of the cylinder on the cutout side toward the neutralaxis location on the opposite side.

The bending moment required to cause a rotation of 1×10^{-4} radian of the rigid end ring with respect to the transverse plane of symmetry is $5075.45,7845.90$, and 4511.04 inch-pounds in the case of the cylinders having $45^{\circ}, 90^{\circ}$, and 135° cutouts, respectively. It should be remembered that the construction of the cylinder with the 90° cutout was different from that of the other two.

conctusions

During the course of the calculation of the stresses in three reinforced monocoque cylinders with side cutout, carried out by means of a numericel procedure developed in part IV in the present series of investigations, the following principal observations were made:

1. The problem cen be stated mathematically by means of a set of simultaneous linear equations represented by the operations tables and the external loads. The operations tables can be set up without diffif culty if use is made of the solutions of the four-panel problem contained in the present report, together with the coefficients presented in the tables and graphs given in NACA TN No. . 999.
2. The equations can be solved by Crout's method at the rate of approximately 2 hours for each unknown quantity. This estimate does not allow for errors.
3. The calculated values of the normal strain in the stringers were in satisfactory agreement with the strains measured in the experiments of part IV of the present series of investigations.
4. The shear stress in the sheet and the bending stress in the rings were found to be very small.
5. An approximate mothod which considers only the axial dieplacements and thus does not satisfy all the equilibrim conditions gave results reasonably close to those obtained by the complete method.

Polytechnic Institute of Brooklyn
Brooklyn N. Y., July 3, 1946

1. Southwell, R. V.: Relaxation Methods in Engineering Science, A Treatise on Approximate Computation. Clerendon Press (Oxford), 1940.
2. Hoff, IN. J., Levy, Robert S., and Kempner, Joseph: Numerical Procedures for the Calculation of the Stresses in Monocoques. I - Diffusion of Tensile Stringer Loads in Reinforced Panels. NACA ITN NO. 934, 1944.
3. Hoff, N. J., and Kempner, Joseph: Numericel Procedures for the Calculation of the Stresses in Monocoques. II - Diffusion of Tensile Stringer Loads in Reinforced Flat Panol. with Cutouts. NACA IN No. 950, 1944.
4. Hoff, N. J., Libby, Paul A., and Klein, Bertram: Numerical Procedures for the Calculation of the Stresses in Monocoques. III - Calculation of the Bending Moments In Fuselage Frames. NACA TN No. 998, 1946.
5. Hoff, N. J., Klein, Bertram, and Libby, Paul A.: Numerical Procedures for the Calculation of the Stresses in Monocoques. IV - Influence Coefficients of Curved Bars for Distortions in Their Own Plane. NACA TN No. 999, 1946.
6. Hoff, N. J., Boley, Bruno A., and Klein, Bertram: Stresses in and General Instability of Monocoque Cylinders with Cutouts. II Calculation of the Stresses in a Cylinder with Symotric Cutout. TACA TN No. 1014, 1946.
7. Hoff, N. J., and Boley, Bmmo A.: Stresses in and General Instability of Monocoque Cylinders with Cutouts. I - Experimental Investigation of Cylinders with a Symetric Cutout Subjected to Pure Bending. NACA TN NO. 1013, 1946.
8. Hoff, N. J., Boley, Brumo A., and Viggiano, Louis R.: Stresses in and General Instability of Monocoque Cylinders with Cutouts. IV - Pure Bending Tests of Cylinders with Side Cutout. INACA IN No. 1264, 1948.
9. Crout, Prescott D.: A Short Method for Evaluating Determinante and Solving Systems of Iinear Equations with Real or Complex Coefficients. Trans. A.I.E.F., vol. 60, 1941, pp. 1235-1240.

TABLE 1 - SCHEMATIC ARRANGEMENT SHOWING THE FOUR QUADRANTS OF THE OPERATIONS TABLES FOR ALL, THREE CYLINDERS

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

TABLE 2- OPERATIONS TABLE FOR CYLINDER 39 WITH 45° CUTOUT.

	${ }^{\mathrm{E}_{\mathrm{c}}}$	${ }^{\text {cha }}$	${ }^{\text {ch }}$	${ }^{\text {ch }}$	$\xi_{\text {B }}$	U_{84}	${ }^{\text {B }}$ S	${ }^{3} 4$	$5_{\text {c3 }}$	${ }_{\text {ca }}$	${ }^{\text {ca }}$	${ }^{1 .} 3$	${ }^{\text {B }}$	${ }^{83}$	${ }^{\text {bs }}$	${ }^{\text {B }}$
$\mathrm{x}_{\text {ca }}$	17170013728	11.57150	5.5857918	1.884840	34, sume	11.51750	5.53737046	प74980	0.568038	11.5715	Menasib	-	2,580278	775	1.4603318	1.2708
${ }^{T}{ }_{\text {c }}$	11.577150	4×712280	1.510042	5.30172106	11.5750	11.85014	2,2933185	4,453384	11.5715	12.282313	. 5100042	00^{103950}	11.5715	13.95585	2.283188	4.455788
$\mathrm{R}_{\text {ct }}$	5.5227948	1.510842	1,44806		5.5377948	275988	lefs	28882	844039	1.5108042	0.08g	0.968950	L. 141489	2,2039185	0.381028	Q2005621
N_{64}	1.7234986	5.3012105	0,069458	2]ISP002	1.27489	4,453884	0.2385621	0.9727	1.22844850	$\overline{0.5133507}$	0.0109458	0.19998	1.288488	1,4036128	0.208501	0.5158
$\mathrm{X}_{\text {B4 }}$	354.898966	11.57160	5,5327949	L284483	711.197178	0	0	0	0.5786779	115715	1.8440376	.224486	$23.9407 / 2$	0	0.	0
T ${ }_{\text {ma }}$	1.57150	11.988749	2.2283	4,453584	0	73.49952	2.270502	9.174142	II. 5775	13.95583	2.2931105	\underline{L}	0	C99660	2885	2.51607
R_{8}	5.5277948	2,220	1.0653	0.23	0	885	2.4445	0.212457	1.8440333	933185	0.35010238	Q7265s		7850223	0.0397	Q23274
N_{1}	T, 2724898	4.683	0.266562	0.127188	0	$\underline{9.174402}$	0.232757	3.9780074	1.2289886	1.465128	0,20552]	Q,16759	1	0,531697	0.232707	136]
x_{ca}	0,566220	11.57715	1.8440396	1.284496	Q5766729	11,5775	1.644^{10310}	1.2240486	170, 124490	0	3,688819	,		,	3.6881602	0
${ }^{T}{ }_{c}$	11.57715	12.7284313	1.5108042	0.5133507	11.57150	13.955593	2.2783185	. 485528	0	31.4300875	0	47709436	0	1160	0	2.810060
R_{ca}	$1.844 \times 2 \times 3$	1.510042	0.0889	Q,076945	1. 1.841038	2209385	0.3510938	0.236582	3, 608888832	0	. 3 20633	0	2.68816	0	1.74000	0
N_{6}	I. 2724996	0.5133567	Q.079458	DLL499824	T. 2884489	1.485128	0.586821	0,157582	0	77789430	0		0	17056	0	21515
$\mathrm{x}_{\text {\% }}$	9.578629	11.5775	1.8401036	1.244886	2, 945150	0	0	0	30,40405889	0	3.006边2	0.	88.750707	0	0	0
T_{BS},	11.57715	13.095583	2.723185	1,485528	0	10,0998886	2.270020	0. 0336075	,	72,991160	-	2,900350	0	33.700060	1	8. 0505448
${ }^{8} 8$	1.84103310	2.2783185	0.3511028	0.8865621	l	22785023	0.089583	0.232745	3.68816852	0	0.71020×16	0	0	0	2.3309080	
$\mathrm{N}_{\mathrm{B3} \text { ! }}$	1.278498	1.485128	0.276682	0.156829	1	0.5316707	0.2377457	0,3525167]	0	2.81025	,	${ }^{2} 3515836$	0	$\overline{808657439}$	0	4.733

NATICNAL ADVISORY COMMATTEE
FOR AERONAUTES

TABLE 2.- OPERATIONS TABLE FOR CYLINDER 39 WITH 45° CUTOUT. - Concluded

	${ }_{5}{ }_{\text {c2 }}$	${ }^{\text {c }}$ c 2	${ }^{\text {c }}$ c	${ }^{\text {c }}$ c	$\xi_{\text {B2 }}$	$u_{\text {B2 }}$	V_{B2}	∇_{32}	$\xi_{c 1}$	${ }_{\text {u }}^{\text {cl }}$	$v_{c 1}$	${ }^{\text {c }}$ cı	$\xi_{B 1}$	u_{BI}	v_{BI}	${ }^{\text {BI }}$	η	$\theta_{A}{ }^{\text {r }}$	-RHS
x_{44}																			
${ }_{T}{ }_{\text {cha }}$																			
$\mathrm{R}_{\mathrm{c}}{ }_{4}$																			
N_{Cl}																			
${ }^{1}{ }^{0}$																	6.8789800204	0	
$\mathrm{T}^{\mathrm{F}} \mathrm{B}_{4}$																	31.37280083	37, 11758982	15.1268543
R_{184}																	0.80 .7401396	0	0,41398175
N_{84}																	3329113320	4.002384972	1;60511073
X_{63}	9.5766229	11.57150	1.844023)	1.2784986	- 9.5766279	11.551150	1,844083100	1.274988						-					
T_{c}	11.577150	12.2884313	1.5108042	0.5133567	11.57115	13.005503	2.2203485	2,485128									い":	\%	$\because 4$
	T.04403316	1.5100042	D.0789720	tol) $\overline{776456}$	1.87409316	2.220368	b. 035510230	0.2385621											
${ }^{-1} \mathrm{~N}_{\mathrm{c}}$	1.2284980	0.5133567	1.0709450	0. 1499024	1.2204586	1.485128	0.28556210	0.1578829											
$\mathrm{X}_{\text {B3 }}$	9.5766299	11.57150	1. 044033812	. 2284888	23.9415572	0	0	0	-								15.12439969	0	229.507224000
${ }^{1}$	11.5775	13.295583	2.2293165	1485128	0	19,08066604	2788502	, 5 5316707									12.95007272	371758982	0, 2.25550813
R_{BO}	1.84093316	2.7293185	0.3551033t	. 23656872	0	2.77850223	0,0098789 1	1.2327457									2,069950500		0,99800 9020
N_{B3}	1.2284480]	1.485128	0.2365691	0.1775929	0	0,5316707	0,2237457	D.35251577									137885979	4,00835072	0,6644586650,

QUADRANT B

- indicates negatve mmaer

NATIONAL ADVISORY COMMUTTEE
FOR AERONLUTICS

TABLE 2．－OPERATIONS TABLE FOR CYLINDER 39 WITH 45° CUTOUT．

	E_{Ca}	$\mathrm{U}_{\mathrm{c} 4}$	${ }^{\text {cha }}$	${ }^{\text {cha }}$	ξ_{84}	${ }^{1} 4$	V_{B4}	${ }^{84}$	$\xi_{\text {c3 }}$	${ }^{4}{ }_{\text {c3 }}$	$\mathrm{v}_{\mathrm{c} 3}$	w_{5}	$\xi_{B 3}$	Uns	$\mathrm{V}_{\mathrm{B} 3}$	$\mathrm{w}_{\text {B3 }}$
$\mathrm{x}_{\text {ct }}$	17， 6013788	11.57150	5.5277 mB	1.178848	54， 8 grax	$\underline{16} 577150$	$5.53{ }^{2} 769$	Ln8\％909	2.566290	11.5715	1，0449815	1．20403	9.570×78	11.5715		1．284400
T_{4}	11.57150	43.7125298	1.510042	53017100	11.57150	11，9007	22293185	4.455384	11.57715	［2．2224313	1.5108042	0513387	11.57715	13，99558	2.2793185	1.405078
R_{4}	5，5327918	15108092	1，4480060	0.06 矿59	5，57279\％	27818385	1053014	0， 2 trin ${ }^{1}$	1． 844003118	1.5106042	0，0789704	0.076950	1.84418989	2， 2×18185	0.5310238	$\underline{02655021}$
N_{64}	1.7284988	5.30127105	0．0768458	2， 5180019	1.2984888	4䢒384	0.2955621	0.477787	1.2284895	0.5133507	1.076958	0． 498984	1．2704963	1，4050128	0.2355501	Q， 1575093
X_{Ba}	354，03986	11.57150	5，5329948	1.1764830	711.19772	1	－1	0	0.5666229	11，57715	$1 . \overline{4} 419330$	．200946	23.24×572	－	0	0
$\mathrm{T}^{\text {P4 }}$	11，57150	11.866749	2.720185	4．453384	0	73.481472	2.77050023	9.1174142	11.57715	［3996583	2,2293105	1.456128	0	10．0999664	2.2763823	Q531607
R_{Ba}	5，5327948	2.2789185	1，0053074	0．23556？	0	2.2885023	2.77451890	0.327457	1.84403315	2.2783185	0.351030	$\underline{0} \mathbf{2} 55521$	1	2.27850223	0，1239783	Q27749
N_{3}	1.2284988	4，46389	0.2356621	0.472787	0	9，174400	0.2527457	3 Tanam	1，2284098	1，485788	0．2363621	Q189990	1	0.5316797	0.327457	Q351517
${ }^{\text {ca }}$	9．5766229	11.57715	1， 84403310	1，228489	2， 5666239	11.5715	1．04409616	$\sqrt{2128} 8086$	1奥， 2844490	0	3，6001697	0	364，478560	0	3.0681662	0
${ }_{T}{ }_{5}$	11.5775	12.2824313	1.5108042	0.5123567	II． 5175	13.005583	7.2293185	1.485128	－	31.4300970	0	47801430	0	27．991遜	0.	2．87096
R_{53}	1，8440936	T5108012	1． 128977289	0，0768458	1.84403318	2.27×138	12510238	2．3365621	3，888016832	0	1.35356537	0	3.68910828	0	0.71082478	0
$\mathrm{N}_{\mathrm{c} 3}$	1．2284980	0.5133507	0.0709458	0．1499824	1．2884960	1.485123	PT5091	Q． 17515928	0	4770791436	0	2.808193	0	2.971256	0	0.3151858
$\mathrm{X}_{\text {Ba }}$	25749229	11.2715	1.8440336	1．2884988	33.91153	0	0	0	304，405888	0	38016	0	867.8567071	0	0	0
$\mathrm{T}_{\mathrm{B} 21}$	11.57150	13.09558	$22 \times 2 \times 465$	1.485128	0	120906tb4		0.534797	0	77.891165	0	2， 7 （0）56	0	13， 5380060	1	6， 6507482
$\mathrm{Re}_{3} 1$	1， 8449310	2，2293185	0， 3 W5ib 1038	0，236652	0	$2 \overline{17} 850$	0，0899783	0，237457	3.68318838	0	0.7102046	1	0	0	2，5443350	0
N_{83}	1．2284480	1.485128	0.2355027	4， 5157828	0	0，5316707	0.577457	0．35251977	0	2.878556	0	0， 31518980	0	5，5007433	0	4273383

NATCONAL ADVISORY COMMATTEE
FOR AERONAUTICS

$\mathrm{X}_{\text {cha }}$						，		9，5786229	1115775	$1 \overline{1949515}$	1．284996	9．576939	W， 178	1.8449936	1284980
T_{C} ！								T1，5715	12.7204313	1.508042	0.5139567	T1．57750	13.999583	$2 . \overline{2} 93485$	1，46520
$\mathrm{R}_{\mathrm{c} 2}$								$\underline{1}, 04493916$	1.5108042	0．07897280	Q019935	T． 0440636	2.898185	0． $5 \mathbf{5} 10238$	0．266591
$\mathrm{N}_{\text {ce：}}$								1.2784888	0．5133567	0.070968	0．1999924	1．2304966	1，4855128	0.2565621	0， 1515
$\mathrm{X}_{\text {ns }}$								9．5766229	11.57715	1.0440330	1，7284963	23， 414572	0	0	0
$\mathrm{T}_{\text {B2 }}$								11.5715	13.095683	2.2837185	14035］ 28	1	19.099654	2785073	0.93670
$\mathrm{R}_{\mathrm{B} 3}$								L64499319	2.2793185	03551030	Q2x50］	1	7.7285027	0，039573	182875
$\mathrm{N}_{\mathrm{B} \%}$								1280988	1.488128	0.23865621	Q 5 20920	0	0，5301607	0.237477	0．52351571
X_{cl}	＋														
${ }^{\mathrm{T}_{\mathrm{c}, 1}}$			．												
R_{Cl}															
N_{Cl}															
${ }^{\text {Cl }}$			＇												
${ }^{\text {T }}$															
R_{BI}															
N_{BI}															
Y／2															
（Qala															

TABLE 2．－OPERATKNS TABLE FOR CYLINDER 39° WTH 45° CUTOUT．－Concluded

	$\xi_{\text {c2 }}$	u_{cz}	${ }^{\text {ct }}$	${ }^{*} \mathbf{C R}$	$5_{B 2}$	$u_{B 2}$	$\nabla_{B 2}$	${ }^{\text {Ba }}$	${ }^{\text {E，}} \mathrm{cl}$	${ }^{\text {c }}$ cı	V_{cl}	m_{c}	$\xi_{B 1}$	u_{BI}	$v_{\text {B1 }}$	${ }_{\text {B }}$	7	$\mathrm{O}_{2} \mathrm{r}$	－RHS
${ }^{x_{c a}}$																			
${ }_{T}{ }_{4}$																			
$\mathrm{R}_{\text {eat }}$																			
N_{4}																			
X_{4}																	6，604002004	0	946510107
${ }^{1}$																	31320003	37.3775898	5，120724
${ }^{\mathrm{R}_{1} \mathrm{Ba}_{4}}$																		0	0，41339775
N_{M}																	3.501103314	4， 015	1， 60921075
x_{6}	9．5766\％20	$11.57 \pi \times 1$		17784960	9，578629］	141750	1.0446936	2，284068											
${ }^{T}{ }_{0}$	11.57150	t． 2684819	1.910002	05113307	113725	989400	32893481	44^{458}											
${ }^{\mathrm{R}} \mathrm{ca}^{\text {a }}$	T． 84408318	1.5100048	2014082×2	970048	1．84403901	2．2009	0,395102040	280582］											
${ }^{\mathrm{N}} \mathrm{c}$	1.27098	0.513×35	Lindasp	1， 4120024	1． 280496	1．46528	02×265910												
${ }^{\mathrm{x}_{83}}$	9.5766209	$11.57 / 50$	1．044931	274080	23.941585	0	－	0									18．21448456	1	27892348
T_{82}	11．5715	13，	12293165	1，406128	0	19．89804		0，531607			1.						12， 950.04714	337175098	
R_{83}	1．840035	2779365			0	2.2780024	1，2065693	2， 2374									2，0009500	D．	
$\mathrm{Nap}^{\text {a }}$	1.78406	1.46554	0．2565991	2157989	0	0.519207	0.32745	1323957										4，0431807	0．0yberex

NATIONAL ADVISORY COMMITTEE
FOR AERONANTIOS

	0	3， 23818363	0	650．475．569	0	1．6006002	1	9．5809\％9	1－57150	840	288080	8576622	11，5719	1.84400318	214886			
$\mathrm{c}_{2}{ }_{1}$ i	31.4000×76	0	1．78091430	1	77，䟝198	18	2． 50 205	11.573150	18.2684313	50009	． 5133987	11.5715	$13.980{ }^{2} 83$		新䢒			
	\square	D．3536374	－	3， 0 aname	1	p， 700050	0	1，8440081	1.5100022	00888724			2.27881×5		$\underline{2365621}$			
$\mathrm{N}_{\mathrm{C2}} 10$	4.78024360	0	2.189460	0	2.97458	0	1319］850．	128086	0.5133567	B． 016	D：148may	1．28400	1.4812	0，2205602	1． 1877789			
${ }^{82}$ 304， 6053808	0.	1． 05081002	J	607，2801797	1	0	0	9596620	1.5715	． 64010 cap	．22400	2394572	0	0	0	10，12491450	0	205059400
$\mathrm{T}_{\mathrm{Ba}}{ }^{1} 1$	7ingiox	0	280856．	1	\＄3， 97898	1	156574320	11510		2，203405	$40^{4} \times 23$	1	19，989094	227850	$\underline{5161607}$	12， 6507072	［ 77778	
$\mathrm{R}_{\mathrm{gz}} \quad 3.6008800$	0	2．7100042	0	0	8	2.43435	－	1.044003 C	$2 \overline{203365}$	2330，	2335831	1	2．778503	1，059573］	223274	2.058955004	4	0．mentex
$\mathrm{N}_{\mathrm{BR}}{ }^{\text {d }}$	28 mmos	0	215103	θ	8 \％ 5×34		12732329	17204900	1.40128		1． $575 \mathrm{Fg} \mathrm{S}^{2}$	0	0．5］160	$\underline{252745}$	1．850157	1．57u9075	40.02082	
$\mathrm{X}_{\mathrm{c} 1}$ ： 0.57 mex	1167715	－440964	1.784900	9．560020	11.57750	1．840031	2284peo	P4L559038	11.57715	1．840	，275480	200．7338074	11.5715		1．20006			
$\mathrm{T}_{61} 11.57 / 15$	12.2824313	1．5100022	2.5133507	II． 77190		278	1．45512	1157715	$13.7 / 50488$	293mpr	$\underline{3} 938570$	11.57759	13.90550	228831851				
R_{Cl} I， 1448950	1.510002	2．07092819	10709456：	T． 0440815	2，248115		． 236559	1,844085	2,036333	क．$\overline{60} 9668$		1．84 ${ }^{1}$	2.2783145	23.550	20x980			
$\mathrm{Nal}_{\mathrm{Cl}}$－T． 27808001	0.5133507	1070980	1．149024	T，Tx 489	1．4092	， 2750815	Q157939	1240886	2 x 389819		1，094383	1．220990	1．455128	27505691	D5F5239			
$\mathrm{x}_{\text {B1 }}$ ！ 9.5740279 ！	［11．5715	1，440951	1.270989	23，9415972	0	0	，	680．73807／4	11.9715	20443910	1．2800		3 5 ［30	170016038		B．08000	0	94.8
	13.298553	22293150	1．48528	－	19．0096694	7．175920	15316707	1157750	13，${ }^{\text {P5553}}$	R 279369 ${ }^{\text {a }}$	1,145128	23，15630		1 4 STM 30	1 74775	3，5rases	2，717598	15．1809518
	2.283105	23mider	（022901	1	$2 \overline{7} 6004$	0.007873	2，23045］：	$\bigcirc 1.840$	12，2793185	R3x mim	129881	3.86845	L	， 60430	16020 15	10．077401396	0	0.453017π
NaI_{81} ， 2784889	1．40988	L23569\％10	0． 1515829	1	0.531679	0， 21775	0.3055	1．2209080	1，40728	182909	P． 515	Z76993	BLT 7150		3．0050en	1392719385	4902008	1．0041975
Y ${ }^{8} \sqrt{2}$ 2																73， 280	1.	31.295
$\mathrm{B}_{4} / 2 / \mathrm{r}$ ．										1	！						10， 471007	0

TABLE 3.- OPERATIONS TABLE FOR CYLINDER 40 WITH 135° CUTOUT

	ξ_{ca}	${ }^{4} \mathrm{ca}$	$\mathbf{v}_{\text {cz }}$	${ }^{\text {c2 }}$	E_{B2}	$u_{\text {BR }}$	V_{BR}	${ }^{\text {Ba }}$	5_{81}	u_{01}	$V_{B 1}$	${ }^{\text {BI }}$	Ma	$\theta_{A}{ }^{\text {r }}$	-RHS
X_{ct}															
T_{Ca}															
R_{Cl}															
N_{Cl}															
$\chi^{x_{4}}$													8.8780040	0	94, 650108142
T_{BA}													8.3781093	7.71750932	15.17627543
R_{B4}													0. 857401354	0	0.41338177
N_{B4}													9.320103385	4.002365912	1.8051/107]
X_{Cl}	9,976670]	11.57760	88468910	प789060	0,578820	11.57750	Lestuesid	,223408\%							
${ }^{\mathrm{T}_{4}}{ }^{\text {a }}$	115770	272643	2.819804?	1.513856	11.57716	13.105683	2723]65	1,400188							
R_{cs}	1044039	1.5108042	1,07801204	L2, 28450	L. 844×12	2.2893108		239P60							
N_{cg}	1.2840888	0.5133587	11040158	9, 40002	1,783900	1,485:28	1298500	155820							
X_{83}	15 506270	1,57750	. $\overline{84} 40836$	T284900	23,415572	0	0	0					16, 12490150	0	220.50724806
T_{Ba}	U51715	C,988589	2,2793165	1,461218	0	98098534	27715028	1531707					2.99577172	37.71758839	
R_{BS}	184400951	2.2283185	03 ,	124065?	0	2.788029	1158781	$\underline{237} 97$					2,00095004	0	0,99800169
$\mathrm{NB}_{\mathrm{Bg}}$	17284808	1,485128	h. 335663	2.588929	1	0.21650	127448	4, 1525 F 77					1.37899320	4.9	
							UADRA	ANT B					- moter		ive muser

NATONAL ADNSOPY COMNTTEE FOR AEROWAUTICS

TABLE 4．－OPERATIONS TABLE FOR CYLINDER 35 WITH 90° CUTOUT

	${ }^{24} \mathrm{BI}_{1}$	${ }^{2 w_{B 2}}$	$\xi_{\text {12 }}$	$U_{\text {B2 }}$	$\mathrm{v}_{\mathbf{2} 2}$	${ }^{\text {B2 }}$	$\xi_{\text {c2 }}$	${ }^{u_{c 2}}$	${ }^{\text {cz }}$	${ }^{\text {c2 }}$	5_{83}	${ }_{\text {H0 }}$	${ }^{\text {b }}$ 3	${ }^{83}$	${ }_{5}$	$0_{\text {c3 }}$	${ }_{c}$	${ }^{\text {ca }}$
T_{BI}	55．（TTrad	11.23014	0．1513	ni．	0.303785	1.900148												
$\mathrm{N}_{\text {ci }}$	11.230764	7.916746	2．485097	1.968146	0，9880］${ }^{\text {a }}$	Canc［3］												
$\mathrm{X}_{\text {on }}$	2354s	2．45809	807．74809	11.5715	1.841836	L－70）	22， 2×3411	11.671415	$0{ }^{51 / 246}$	1280503	0.00114	0	8	0	19.15235081	11，471416		288683
T_{EL}	1 100000	1．1．00016	11.5715	Tration	14.7482358	4.0138408	İ1001418	7． 11085070	0．5skers	1011977	，	720a38	5， 18800	（5645158	11.6711418	7．1058		1819
$\mathrm{R}_{\text {R }}$	［0，880\％／b	0.0838 Ema	1．844339	4．7045233		1.7758678	0.9174482	0．50870	p．a488439	中0143030	0	15.941859	2．977405 ${ }^{\text {a }}$	1.5878810	0.977468	0.98347	，$\overline{493043}$	10140060
N_{82}	1.208048	1.0292734	1，7740808	14.0133848	1.7120579	5.18371857	0．7exeas	0．blargte	Rolsarse	L004838005	\bigcirc		1.57884×2	0.5028510	0.2850031	Q． 111897	0，014800	9，00466006
$x_{\text {c }}$				11.880416	0．91784620	$\underline{128833}$		11.607415 .5		desem	19．752458	11.174146	0.9784220	0．$\overline{\text { Wexmax }}$	19.12384501	11．50， 116	，⿹丁口欠а	0，20xms
${ }^{\text {T }}$ ck			$11.6 \pi / 146$	7.1105507	10.553970	0.101972	11.5041615		103080	5．63147	11.00416	7.100580	Q．552470 0	0.111972	11.000416	0．18487／［2］	ET707	\＄980606
${ }^{\mathrm{R}_{\mathrm{c}_{2}}}$			0．917004	0.538850	0．033013	0，0143136	0.91768	0.93188		1324046	D．9，7889zc	0.5980	0.0 .81896340	0，0145810	0.1728	7.97187	Vr	
$\mathrm{N}_{\mathrm{c} 2}$			8，240803 ${ }^{\text {a }}$	0.1819272	0．0143006	0．0pasprase	$0.28 \% 803$	5．6333177	C1．$\overline{\text { Bx } 204}$	Th7009	T．7958533	0.819872	0.0 .1430051		0.208503	9．370	76mpa	129070101
$\mathrm{X}_{\text {ds }}$			4． 4831114	0	：	0	19：138456	6\％7110	с970¢	2088893	30］ 2×53	，	0	0	431．2285501	0． 0 ces 16	27019804	6． 2×290153
${ }^{\text {T }}$			0	72.648865	15，M1689	2， 0.0655150	11.501418	7． 11080880	20．50240	0．188272	0	$\overline{3}$ Broma	7． 7 \％	7035ise	0.880916	21，106447	． 62095	$\underline{188 p}$
R_{Ba}			0	17．94｜60580	2．074099	1.5778840	$0.1784 \mathrm{E}_{2}$	0．53240 0	Com3300		0	125820700	$4.50 / 5 / 0 / 32$	． 580081	2， 6103334	1.670715	1390050	20，
N_{83}			0	10.55485158	1.1878414	0.588808180	$\overline{0.2083030}$	a， 1819972	204388em	nountised	0	Disuab 2×0	1.55503715	5．203147	0，194］ 53	1.10605150	．imused	ciezarsas
x_{4}			19，153458	11.801416	0.0174682	a， 2 26583	19.15344581	11． 6.104150	0．710460	T20030	（3）， 2585301	0.0080010	2．70193940	0.8298159	$4 \overline{10.77808091}$	－00xpil	／7018394	Screve
T_{cs}			11.870416	7.16034	2.5988470	0.18184727	115704168	crasmix	9．8863	$5 \mathrm{SO} \times 545$	$\overline{0.0 x y s o l b ~}$	2． 1.084149	1，050075	1.0670808	0.002018	0．0557m	920955s	＋02085
R_{ca}			$\overline{0.91764020 ~}$	0.758970	0.00385031	0.0143006		7．077637	1．4．4537xat	cincors	2781390	1.07075	0． 3 eosesr 0	0.278302	2．81030	5．020x806	\％ablocil	（2，705008
$\mathrm{N}_{\text {cal }}$			0，205603	0.1819	0.043006	． 01065	0.208883	1．39054689			0.92953	1.680				－	R70045089	¢ $\overline{\text { br }}$

NATOWAL ADVISORY OOMMTTEE
FOR AERONWUTIGS

X_{Eg}											23．011592	0	0	0	9.578680	11.57715	1．049pasi	， 92×1680
T_{BA}											0	19．809904	2.70023	0.531674	$11.57 / 10$	13.80830	3229145	1．405174
$\mathrm{R}_{\mathrm{E}_{\text {a }}}$											0	2.2785022	0.0005703	0.23774568	1.04403036	2.728546		L23656308
N_{AL}											1	0.531609	0．2377	a33 3697	1.2884988	1.485186	ersesteno	，15758290
${ }_{\text {x }}$											9570629	11.57715	1，04403036	1．2884950	0.9700^{20}	11.57715	7．0440989	273480
${ }_{T}{ }_{\text {cta }}$											11.57715	19.953509	2.253515	1.465128	11.57715	$2 \pi \times 13$	1510802	29， 133807
${ }^{\mathrm{R}_{54}}$											1.4408810	$\overline{2.2033100}$	C5301020	0，		1.5100062		－ 07070458
N_{Cl}											1．2809000	1，405128	0.23050 mq	0．15798290	1，2744006	0，513361	griestin	11499024
X_{BL} ；																		
T_{88}															，			
$\mathrm{R}_{\mathrm{es},}$ ；											．							
N_{Bg} ；																		
$\mathrm{X}_{\mathrm{cs} \text { ；}}$																		
$\mathrm{T}_{\mathrm{c}} \mathrm{s}_{1}$																		
$\mathrm{R}_{\mathrm{cs}} 1$																		
${ }^{\mathrm{NaS}}$																		
512																		
8 $\times 1 /$																		

QUADRANT C
—motcatis nechtive muges

TABLE 4．－OPERATIONS TABLE FOR CYLINDER 35 WITH 90° CUTOUT－concluded

	5_{04}	0_{34}	∇_{84}	${ }^{\text {E }}$ 4	${ }_{5}$	${ }^{\text {U }}$ c4	$\mathrm{V}_{\mathrm{c} 4}$	${ }^{\text {ch }}$	$\xi_{\text {cs }}$	${ }^{\text {ªs }}$	V_{Ms}	${ }^{\text {as }}$	${ }_{5}{ }_{\text {cs }}$	$\mathrm{u}_{\text {cs }}$	${ }^{\text {cis }}$	＂cs	${ }_{7}$	${ }^{9} \mathrm{r}$	－RHS
T_{BI}																	28．9770191	7807750934	1，3725654
N_{el}																	3.6033856	4，002785951	1.7735888
X_{pa}																	8，15039360	0	12.008245
$\mathrm{T}_{\mathrm{B} 2}$																	$\dot{\text { ¢ }} 2727845$	20．30020074	$1 \overline{7}^{71004000}$
R_{ap}																		2.26070575	L．1500072
N_{Nz}																	山最900	2.2403759	l 0 93304
$\mathrm{X}_{\mathrm{c} 2}$																			
$\mathrm{T}_{\mathrm{c}_{2}}$																			
$\mathrm{R}_{\mathrm{c}_{2}}$																			
N_{12}																			
X_{Ba}	23，948072	0	0	0	9．8700220	1157715	1.044084	． 228494									12．91830717	0	77．0495783
$T_{\text {P3 }}$	0	1960060	2775023	1．5］16707	11.57115	13.819513	\％ 2 20 ${ }^{2}$	1，401720									5.2485031	28，36309860	2， 2 207801
A_{B3}	0	2.776	1.0088730	1，23774809	1.044989	2，289100	D． 5 501083	12300009									0，423606	？ 23.5	0.1808080×10
$\mathrm{N}_{\text {es，}}$	0	$0.5310{ }^{0}$	2．2374569	2.325537	1．220906	1，440］18		H67899									0.13423998	2.2437592	0， 0.06474472
X_{ca}	2．5708220		1，84409901	1．$\overline{288} 406$	9．5766279	11.5775	1，$\overline{2410096}$	228480											
T_{53}	II，5112	199656	$2 \overline{29} 985$	1．405120	71．5715	12.882413	1.5100042	$\underline{5133 x}$											
R_{ck}	T． 0449810	2729385		2， 236065	1．0440330］	1.5100042	Lotiotraw	Lorsex										．	
$\mathrm{N}_{\mathrm{G} 3}$.	T． 2 2uen	1.450028	Q208tazon	2． 51589000	T． 28.400	0513060］	D．	149994											

QUADRANT B
－molcates neantive mamed
RATRONAL ADYSORT OOMETIEE：
FOR AERONAUTICS

X_{Bd}	107000887	0	0	0	396．EPDES	0	3004938	10	23.911572	0	0	0	9，46009］	［1．51\％	844836	1224900	18．1249249	0	39，0756400
T_{34}	0	23980008	0		0	27，99160	0	2.8025	0	9．000804	2270×23	573107	11.5715	13．995583	222045	400128	12990725	77．71751930	0.2085084
$\mathrm{Req}_{\text {el }}$	0	0	230463250	0	3．000060\％	0	2710808	0	0	2，2706923	20985its	2232rang	1，844as，	2.2783818	36510250	202885800	2．060， 0 006	，	0.9998
$\mathrm{N}_{\mathrm{B}_{4}}$	0		0	（2］3306	0	2.97030	，	23／500	0	$0 \overline{0310707}$	123274600	2093mip7	1.20000	1，48580	1，230500	P， 1579850	370egr	4，002005072	
X_{c}	584，15700rs	0	3.5850 .6022	0	1652041460	0	200850004	0	9，5762029	11，5715	1.044036	1，224060	9．5800 ${ }^{\text {a }}$	157710	Aspayd	d， 22849808			
$\mathrm{T}_{\mathrm{c}}{ }^{\text {a }}$	0	7 m	0	29035	0	3． 4101010	0	78949	11． 5 䂙通	13995883		1，积行	II． T ［15	12.2024313	， 11000	20123y			
R_{64}	3.00046	0	27000476	i	3．8001000	0	1． 35.50038	0	T． 84000010	2，228305	2．355110238	12wisay	T．8pegs	1.505002	207072ec	cioreacter			
${ }^{\mathrm{N}} \mathrm{cta}^{\text {a }}$	1	2 2flub	0	0．3151488	0	47094439	0	21001905	T．320960	1，40128	72203000	7praco	T．79200	0．⿹丁口 3397	809P968	4， 1440×29			
${ }^{\text {d }}$	24， 415	0	0	0	9.546629	11.5715	Levarn	2， 204	partatich	0	0	－ 0		11.2775	5.5329	ditupex		0	153，2408182，
T_{af}	0	92898504	271003	2，5316707	II， $57 / 15$		220345	4000 28	0	73424752	27	Exabe	II． $71 / 3$	1190074．	729915	145534	3 3780939	77．7175icsed	151295
R_{BS}	0	2775003	7．gobim	2 2×2450	1.940036	2．293445	0．373000	6． 2 zetata	0	2．7750\％	24740808	1232450	5． 32720	2.272035	1，0¢59］14	thymen	007709	0	0.433872
N_{og}	0	0.5318707	2．2204669	2． 8275157	1．224600	$1.48+23$	2．2sasicy	1， 15789	－0	2.38085	R2237409	2，	T．2000	4，44354	Lextix	What178	3，30才1939	4，00325017	10951076
X_{60}	1，50478	11．2\％15	1，84400901	1．204998	9.56689	ll． 51113	Lowner	［20	50， 5×145	15.75	5，5327048	7\％		$11.57 / 5$	1537］	4149909			
$\mathrm{T}_{\mathrm{c},}$	$11.51 / 5$		2．229348		11.5715		L59092		115715	H280］${ }^{\text {a }}$	229015	14034．	－ 57115	10.78538	STM0				
$\mathrm{R}_{6 B}$	1.84909810	2203165	5． 5 5500288	208rex	1944936	1.500080		Copand	5， 22271948	2t203］	1，0003071	，Duace	5，522］04	1.50002	449000	qureghe			
N_{cs}	1.220496	1．45098	D．2zexto 0	2． 157598	1．280909	0.513×10	0．p09505	14.8084	1，223180	4．44584	21339620	D．पय	1．2709\％	5.712					
$Y / 2$	16．12494，		7	［76959］					6，6000n	31 $\sqrt{72003}$		1320					$10.005 / 1005$	－	7，29151464
（ $Q_{0} / 2 / \pi$	10	77.10 creed	0						0	8．717xese	0	10303929					0	P9．9039976	0

TABLP 5.- DAFIBCTIONS AND ROIATIONS FOR
CYITIDEER WITH 45° CUTOUT

$$
\begin{aligned}
& {[\mathrm{M}=5075.45 \text { in. }-\mathrm{lb} ; \quad \eta=0.934679 ;} \\
& \theta \mathrm{r}=-0.182954 ; \text { unit for values } \\
&\text { is } \left.1 \times 10^{-3} \text { in. or radian }\right]
\end{aligned}
$$

		Ring A	Ring B	Ring 0
Stringer 1*	s \mathbf{u} v \mathbf{v}	$\begin{array}{r} -0.382683 \\ .680577 \\ .357683 \\ -.018295 \end{array}$	$\begin{array}{r} -0.211436 \\ .000999 \\ .00110 \\ -.013137 \end{array}$	45° cutout
Stringer 1	ξ \mathbf{u} \mathbf{v} \mathbf{w}	$\begin{array}{r} .382683 \\ .680577 \\ -.357683 \\ -.018295 \end{array}$	$\begin{array}{r} .011436 \\ .000999 \\ -.000110 \\ -.013137 \end{array}$	0.070479 $-.145643$ $-.050187$ -. 012965
Stringer 2	$\mathbf{5}$ \mathbf{u} \mathbf{v} \mathbf{w}	$\begin{array}{r} .923880 \\ .174729 \\ -.863531 \\ -.018295 \end{array}$	$\begin{array}{r} .462027 \\ -.086238 \\ -.232744 \\ -.028647 \end{array}$	$\begin{array}{r} .154009 \\ -.176519 \\ -.024713 \\ -.013301 \\ \hline \end{array}$
Stringer 3	5 u \mathbf{v} \mathbf{v}	$\begin{array}{r} .923880 \\ -.540637 \\ -.863531 \\ -.018295 \end{array}$	$\begin{array}{r} .461874 \\ -.269938 \\ -.185258 \\ -.010892 \end{array}$	$\begin{array}{r} .153958 \\ -.183646 \\ .002972 \\ -.016637 \end{array}$
Stringer 4	W	$\begin{array}{r} .382683 \\ -1.046485 \\ -.357683 \\ -.018295 \end{array}$	$\begin{array}{r} .191394 \\ -.376640 \\ -.086306 \\ -.020508 \end{array}$	$\begin{array}{r} .063798 \\ -.179948 \\ .003054 \\ -.018817 \end{array}$
Stringer 4'	5 u \% W	$\begin{array}{r} -.382683 \\ -1.046485 \\ .357683 \\ -.018295 \end{array}$	$\begin{array}{r} -.191394 \\ -.376640 \\ .086306 \\ -.020508 \end{array}$	$-.063798$ $-.179948$ $-.003054$ -. 018817

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

TABIE 6.- DEFIECIIONS AND ROTATIONS FOR
CYIITNDER WITH 90° CUTOUT

$$
\begin{aligned}
& {[M=7845.90 \text { in. }-1 b ; \quad \eta=0.877023 ;} \\
& \theta \mathrm{r}=0.128525 \text {; unit for values } \\
& \text { is } 1 \times 10^{-3} \mathrm{in} \text {. or radian }
\end{aligned}
$$

		Ring A	Ring B	Ring C
Stringer 2^{\prime}	$\begin{aligned} & \mathbf{\xi} \\ & \mathbf{u} \\ & \mathbf{v} \\ & \mathbf{w} \end{aligned}$	$\begin{array}{r} -0.707107 \\ .748674 \\ .620149 \\ .012853 \end{array}$	$\begin{array}{r} -. .443778 \\ .316729 \\ -.339502 \\ -.081652 \end{array}$	
Stringer 1	s u v W	$\begin{aligned} & 0 \\ & 1.005548 \\ & 0 \\ & .012853 \end{aligned}$	$\begin{aligned} & 0 \\ & 0.133452 \\ & .123108 \end{aligned}$	90° cutout
Stringer 2	5 \square \square	$\begin{array}{r} .707107 \\ .748674 \\ -.6201499 \\ .012853 \end{array}$	$\begin{array}{r} .443778 \\ .316729 \\ .139502 \\ -.081652 \end{array}$	$\begin{array}{r} 0.147921 \\ .396281 \\ -.614729 \\ .095299 \end{array}$
Stringer 3	¢ \mathbf{u} \mathbf{v} \mathbf{W}	$\begin{array}{r} .923880 \\ .464147 \\ -.810264 \\ .012833 \end{array}$	$\begin{array}{r} .462609 \\ .275678 \\ -.327575 \\ -.055475 \end{array}$	$\begin{array}{r} .154210 \\ .203256 \\ -.356365 \\ .093722 \end{array}$
Stringer 4	¢ u J W	$\begin{array}{r} .923880 \\ -.207097 \\ -.810264 \\ .012853 \end{array}$	$\begin{array}{r} .461645 \\ .034594 \\ -.088412 \\ .057352 \end{array}$	$\begin{aligned} & .153875 \\ & .128796 \\ & .092635 \\ & .032331 \end{aligned}$
Stringer 5	¢ \mathbf{u} \mathbf{v} \mathbf{W}	$\begin{array}{r} .382683 \\ . .681739 \\ -.335622 \\ .012853 \end{array}$	$\begin{array}{r} .191577 \\ -.003785 \\ -.088206 \\ .000093 \end{array}$.063867 .189788 020932 006447
Stringer $5^{\text {a }}$	¢ \mathbf{u} \mathbf{v} \mathbf{w}	$\begin{array}{r} -.382683 \\ -.681439 \\ .335622 \\ .012853 \end{array}$	$\begin{array}{r} -.191577 \\ -.003785 \\ .088206 \\ .000093 \end{array}$	$\begin{array}{r} -.063867 \\ . .189788 \\ -.020932 \\ .006447 \end{array}$

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

tabis 7.- demitecilons and rotaitons for
 CYITIDER WITH 135° CUTOUT

		Ring A	Ring B	Ring C
Stringer $2^{\text {\% }}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{u} \\ & \mathbf{v} \\ & \mathbf{w} \end{aligned}$	$\begin{array}{r} -0.923880 \\ . .75052 \\ . .721257 \\ -.002370 \end{array}$	$\begin{array}{r} -0.511401 \\ .142873 \\ .276732 \\ -.093973 \end{array}$	335° cutout
Stringer ${ }^{14}$	\mathbf{s} \mathbf{u} \mathbf{v} \mathbf{v}	$\begin{array}{r} -.382683 \\ .697557 \\ . .298752 \\ -.002370 \end{array}$	-.381188 -.095065 -.652765 .045670	
Stringer 1	5 \mathbf{u} \mathbf{v} \mathbf{v}	$\begin{array}{r} .382683 \\ .697557 \\ -.298752 \\ -.002370 \end{array}$.381188 -.095065 .652765 .045670	
Stringar 2	5 \mathbf{u} \mathbf{v}	$\begin{array}{r} .923880 \\ .275052 \\ -.721257 \\ -.002370 \end{array}$.511401 .142873 -.276732 -.093973	$\begin{array}{r} 0.170466 \\ .057603 \\ -.099144 \\ .025017 \end{array}$
Stringer 3	s \mathbf{u} \mathbf{v} \mathbf{w}	$\begin{array}{r} .923880 \\ -.322452 \\ -.721257 \\ -.002370 \end{array}$	$\begin{array}{r} .461519 \\ -.075017 \\ -.035912 \\ .054762 \end{array}$	$\begin{aligned} & .153841 \\ & .043337 \\ & .061874 \\ & .022328 \end{aligned}$
Stringer 4	w	$\begin{array}{r} .382683 \\ -.744957 \\ -.298752 \\ -.002370 \end{array}$	$\begin{array}{r} .191637 \\ -.067597 \\ -.049547 \\ -.015939 \end{array}$	$\begin{array}{r} .063876 \\ .120387 \\ .083380 \\ -.003614 \end{array}$
Stringer $4^{\text {8 }}$	$\stackrel{\square}{W}$	-. 382683 $-.744957$. 298752 $-.002370$	$\begin{array}{r} -.191637 \\ -.067597 \\ .049547 \\ -.015939 \\ \hline \end{array}$	$\begin{array}{r} -.063876 \\ . .080387 \\ -.08360 \\ -.003614 \\ \hline \end{array}$
Stringer ${ }^{\text {3 }}$				

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABIR 8.- AXIAL DEFILECIIONS FOR APPROXIMAIT SOLJIIONS
[Unit for values is 1×10^{-3} in.]
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Angle of } \\ \text { cutout }\end{array} & \text { Stringer } & \text { Ring A } & \text { Ring B } & \text { Ring C } & \begin{array}{l}\text { Average } \\ \text { moment } \\ \text { (in.-Ib) }\end{array} \\ \hline & 1 & 2 & 0.382683 & 0.206436 & 0.071479\end{array}\right]$

Figure 1.- Actual monocoque cylinders. (Described in reference 8.)

Figure 2.- Modified monocoque cylinders.
MATIONAL ADVISORY
COMHTTEE FOR AERONAUTIOS

Figure 3.- Effect of unit axdel displacement of F. Forces and moments acting on constraints $r=\frac{G t}{z} ; \Omega=\frac{G t a}{4 L}$.

Figure 4.- Effect of unft tangential displacement of F. Forces and moments acting on constraints.
$\Gamma=\frac{G t}{2} ; \Lambda=\frac{G t I}{a}$.

Figure 5.- Effect of unit radial displacement of F. Forces and moments acting on constraints. $r=\frac{G t}{2} ; \Lambda=\frac{G t I}{2}$

Figure 6.- Effect of unit rotation of F. Forces and morients acting onconstraints. $\quad \Gamma=\frac{G t}{2} ; A=\frac{G L L}{2}$.

FHgure 7.- Effect of unit axdel displacement of F. Forces and moments acting on constraints.
$r=\frac{G t}{2} ; \Omega=\frac{G t_{a}}{4 \mathrm{~L}}$. (Curvature opposite that in $\mathrm{figs}^{2} .3$ to 8. .)

Figure a.- Effect of unit tangential displacement of P. Forces and moments acting on constraints,

$$
r=\frac{G t}{2} ; A=\frac{G L L}{2} . \text { (Curvature opposite that in figs. } 3 \text { to } \theta \text {) }
$$

$\Gamma=\frac{G L}{2} ; \quad \Lambda=\frac{G L L}{a}$. (Curvature opposite that in figs. 3 to 9.)

Figure 10.- Effect of unit rotation of F. Forces and moments acting on
$F=\frac{\mathrm{Gt}}{2} ; A=\frac{\mathrm{GtL}}{\mathrm{a}}$. (Curvature opposite that in figs. 3 to 0 .)

Figure 11.- Deflected shape of full rings in their own planes.

MATOMAL AOVISORY
COMMITEE FOR AERONAUTICS

90° CuTOUT
NACA IN NO.

Figure 13.- Deflected shape of cut rings in their own planes.

Figure 16.- Comparison of variation of normal strain. Full section, 16 stringers, 90° cutout, $\mathrm{M}=20,000 \mathrm{in}-1 \mathrm{~b}$.

Figure 18.- Comparison of variation of normal strain. Cutout section, 8 stringers, 45° cutout, $M=20,000 \mathrm{in}-\mathrm{ib}$.

Figure 19.- Comparison of variation of normal strain. Cutout section, 16 stringers, 90° cutout, $\mathrm{M}=20,000 \mathrm{in}-1 \mathrm{lb}$.

Figure 20.- Comparison of variation of normal strain. Cutout section, 8 stringers, 135° cutout, $M=20,000 \mathrm{in}-1 \mathrm{~b}$.

Figure 22.- Bending stress distribution in full rings. $M=20,000$ in-1b.

