3,872 research outputs found

    Earth-like Habitats in Planetary Systems

    Full text link
    Understanding the concept of habitability is related to an evolutionary knowledge of the particular planet-in-question. Additional indications so-called "systemic aspects" of the planetary system as a whole governs a particular planet's claim on habitability. Here we focus on such systemic aspects and discuss their relevance to the formation of an 'Earth-like' habitable planet. We summarize our results obtained by lunar sample work and numerical models within the framework of the Research Alliance "Planetary Evolution and Life". We consider various scenarios which simulate the dynamical evolution of the Solar System and discuss the likelihood of forming an Earth-like world orbiting another star. Our model approach is constrained by observations of the modern Solar System and the knowledge of its history. Results suggest that the long-term presence of terrestrial planets is jeopardized due to gravitational interactions if giant planets are present. But habitability of inner rocky planets may be supported in those planetary systems hosting giant planets. Gravitational interactions within a complex multiple-body structure including giant planets may supply terrestrial planets with materials which formed in the colder region of the proto-planetary disk. During these processes, water, the prime requisite for habitability, is delivered to the inner system. This may occur either during the main accretion phase of terrestrial planets or via impacts during a post-accretion bombardment. Results for both processes are summarized and discussed with reference to the lunar crater record. Starting from a scenario involving migration of the giant planets this contribution discusses the delivery of water to Earth, the modification of atmospheres by impacts in a planetary system context and the likelihood of the existence of extrasolar Earth-like habitable worlds.Comment: 36 Pages, 6 figures, 2014, Special Issue in Planetary and Space Science on the Helmholtz Research Alliance on Planetary Evolution and Lif

    The Abelian/Nonabelian Correspondence and Frobenius Manifolds

    Full text link
    We propose an approach via Frobenius manifolds to the study (began in math.AG/0407254) of the relation between rational Gromov-Witten invariants of nonabelian quotients X//G and those of the corresponding ``abelianized'' quotients X//T, for T a maximal torus in G. The ensuing conjecture expresses the Gromov-Witten potential of X//G in terms of the potential of X//T. We prove this conjecture when the nonabelian quotients are partial flag manifolds.Comment: 35 pages, no figure

    Intercomparisons of airborne measurements of aerosol ionic chemical composition during TRACE-P and ACE-Asia

    Get PDF
    As part of the two field studies, Transport and Chemical Evolution over the Pacific (TRACE-P) and the Asian Aerosol Characterization Experiment (ACE-Asia), the inorganic chemical composition of tropospheric aerosols was measured over the western Pacific from three separate aircraft using various methods. Comparisons are made between the rapid online techniques of the particle into liquid sampler (PILS) for measurement of a suite of fine particle a mist chamber/ion chromatograph (MC/IC) measurement of fine sulfate, and the longer time-integrated filter and micro-orifice impactor (MOI) measurements. Comparisons between identical PILS on two separate aircraft flying in formation showed that they were highly correlated (e.g., sulfate r2 of 0.95), but were systematically different by 10 ± 5% (linear regression slope and 95% confidence bounds), and had generally higher concentrations on the aircraft with a low-turbulence inlet and shorter inlet-to-instrument transmission tubing. Comparisons of PILS and mist chamber measurements of fine sulfate on two different aircraft during formation flying had an r 2 of 0.78 and a relative difference of 39% ± 5%. MOI ionic data integrated to the PILS upper measurement size of 1.3 mm sampling from separate inlets on the same aircraft showed that for sulfate, PILS and MOI were within 14% ± 6% and correlated with an r 2 of 0.87. Most ionic compounds were within ±30%, which is in the range of differences reported between PILS and integrated samplers from ground-based comparisons. In many cases, direct intercomparison between the various instruments is difficult due to differences in upper-size detection limits. However, for this study, the results suggest that the fine particle mass composition measured from aircraft agree to within 30–40%

    Phytoplankton blooms weakly influence the cloud forming ability of sea spray aerosol

    Full text link
    After many field studies, the establishment of connections between marine microbiological processes, sea spray aerosol (SSA) composition, and cloud condensation nuclei (CCN) has remained an elusive challenge. In this study, we induced algae blooms to probe how complex changes in seawater composition impact the ability of nascent SSA to act as CCN, quantified by using the apparent hygroscopicity parameter (κapp). Throughout all blooms, κapp ranged between 0.7 and 1.4 (average 0.95 ± 0.15), consistent with laboratory investigations using algae‐produced organic matter, but differing from climate model parameterizations and in situ SSA generation studies. The size distribution of nascent SSA dictates that changes in κapp associated with biological processing induce less than 3% change in expected CCN concentrations for typical marine cloud supersaturations. The insignificant effect of hygroscopicity on CCN concentrations suggests that the SSA production flux and/or secondary aerosol chemistry may be more important factors linking ocean biogeochemistry and marine clouds.Key PointsChanges in seawater and sea spray composition did not strongly affect expected CCN concentrationsBlooms may impact clouds more strongly through changes in aerosol flux or secondary chemistryModel parameterizations likely overestimate changes in cloud nuclei due to primary marine organicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134444/1/grl54978_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134444/2/grl54978-sup-0001-supinfo.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134444/3/grl54978.pd

    Four-phase patterns in forced oscillatory systems

    Get PDF
    We investigate pattern formation in self-oscillating systems forced by an external periodic perturbation. Experimental observations and numerical studies of reaction-diffusion systems and an analysis of an amplitude equation are presented. The oscillations in each of these systems entrain to rational multiples of the perturbation frequency for certain values of the forcing frequency and amplitude. We focus on the subharmonic resonant case where the system locks at one fourth the driving frequency, and four-phase rotating spiral patterns are observed at low forcing amplitudes. The spiral patterns are studied using an amplitude equation for periodically forced oscillating systems. The analysis predicts a bifurcation (with increasing forcing) from rotating four-phase spirals to standing two-phase patterns. This bifurcation is also found in periodically forced reaction-diffusion equations, the FitzHugh-Nagumo and Brusselator models, even far from the onset of oscillations where the amplitude equation analysis is not strictly valid. In a Belousov-Zhabotinsky chemical system periodically forced with light we also observe four-phase rotating spiral wave patterns. However, we have not observed the transition to standing two-phase patterns, possibly because with increasing light intensity the reaction kinetics become excitable rather than oscillatory.Comment: 11 page

    On the Crepant Resolution Conjecture in the Local Case

    Full text link
    In this paper we analyze four examples of birational transformations between local Calabi-Yau 3-folds: two crepant resolutions, a crepant partial resolution, and a flop. We study the effect of these transformations on genus-zero Gromov-Witten invariants, proving the Coates-Corti-Iritani-Tseng/Ruan form of the Crepant Resolution Conjecture in each case. Our results suggest that this form of the Crepant Resolution Conjecture may also hold for more general crepant birational transformations. They also suggest that Ruan's original Crepant Resolution Conjecture should be modified, by including appropriate "quantum corrections", and that there is no straightforward generalization of either Ruan's original Conjecture or the Cohomological Crepant Resolution Conjecture to the case of crepant partial resolutions. Our methods are based on mirror symmetry for toric orbifolds.Comment: 27 pages. This is a substantially revised and shortened version of my preprint "Wall-Crossings in Toric Gromov-Witten Theory II: Local Examples"; all results contained here are also proved there. To appear in Communications in Mathematical Physic

    The cost-effectiveness of banning highly hazardous pesticides to prevent suicides due to pesticide self-ingestion across 14 countries:a model-based economic evaluation

    Get PDF
    Background: Reducing suicides is a key Sustainable Development Goal target for improving global health. Highly hazardous pesticides are among the leading causes of death by suicide in low-income and middle-income countries. National bans of acutely toxic highly hazardous pesticides have led to substantial reductions in pesticide-attributable suicides across several countries. This study evaluated the cost-effectiveness of implementing national bans of highly hazardous pesticides to reduce the burden of pesticide suicides.Methods: A Markov model was developed to examine the costs and health effects of implementing a national ban of highly hazardous pesticides to prevent suicides due to pesticide self-poisoning, compared with a null comparator. We used WHO cost-effectiveness and strategic planning (WHO-CHOICE) methods to estimate pesticide-attributable suicide rates for 100 years from 2017. Country-specific costs were obtained from the WHO-CHOICE database and denominated in 2017 international dollars (I),discountedata3), discounted at a 3% annual rate, and health effects were measured in healthy life-years gained (HLYGs). We used a demographic projection model beginning with the country population in the baseline year (2017), split by 1-year age group and sex. Country-specific data on overall suicide rates were obtained for 2017 by age and sex from the Global Burden of Disease Study 2017 Data Resources. The analysis involved 14 countries spanning low-income to high-income settings, and cost-effectiveness ratios were analysed at the country-specific level and aggregated according to country income group and the proportion of suicides due to pesticides.Findings: Banning highly hazardous pesticides across the 14 countries studied could result in about 28 000 (95% uncertainty interval [UI] 24 000–32 000) fewer suicide deaths each year at an annual cost of I0·007 per capita (95% UI 0·006–0·008). In the population-standardised results for the base case analysis, national bans produced cost-effectiveness ratios of 94perHLYG(9594 per HLYG (95% UI 73–123) across low-income and lower-middle-income countries and 237 per HLYG (95% UI 191–303) across upper-middle-income and high-income countries. Bans were more cost-effective in countries where a high proportion of suicides are attributable to pesticide self-poisoning, reaching a cost-effectiveness ratio of $75 per HLYG (95% UI 58–99) in two countries with proportions of more than 30%.Interpretation: National bans of highly hazardous pesticides are a potentially cost-effective and affordable intervention for reducing suicide deaths in countries with a high burden of suicides attributable to pesticides. However, our study findings are limited by imperfect data and assumptions that could be improved upon by future studies.Funding: WHO

    Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase Modulates Oscillations of Pancreatic Islet Metabolism

    Get PDF
    Pulses of insulin from pancreatic beta-cells help maintain blood glucose in a narrow range, although the source of these pulses is unclear. It has been proposed that a positive feedback circuit exists within the glycolytic pathway, the autocatalytic activation of phosphofructokinase-1 (PFK1), which endows pancreatic beta-cells with the ability to generate oscillations in metabolism. Flux through PFK1 is controlled by the bifunctional enzyme PFK2/FBPase2 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) in two ways: via (1) production/degradation of fructose-2,6-bisphosphate (Fru2,6-BP), a potent allosteric activator of PFK1, as well as (2) direct activation of glucokinase due to a protein-protein interaction. In this study, we used a combination of live-cell imaging and mathematical modeling to examine the effects of inducibly-expressed PFK2/FBPase2 mutants on glucose-induced Ca2+ pulsatility in mouse islets. Irrespective of the ability to bind glucokinase, mutants of PFK2/FBPase2 that increased the kinase:phosphatase ratio reduced the period and amplitude of Ca2+ oscillations. Mutants which reduced the kinase:phosphatase ratio had the opposite effect. These results indicate that the main effect of the bifunctional enzyme on islet pulsatility is due to Fru2,6-BP alteration of the threshold for autocatalytic activation of PFK1 by Fru1,6-BP. Using computational models based on PFK1-generated islet oscillations, we then illustrated how moderate elevation of Fru-2,6-BP can increase the frequency of glycolytic oscillations while reducing their amplitude, with sufficiently high activation resulting in termination of slow oscillations. The concordance we observed between PFK2/FBPase2-induced modulation of islet oscillations and the models of PFK1-driven oscillations furthermore suggests that metabolic oscillations, like those found in yeast and skeletal muscle, are shaped early in glycolysis

    Kinetic models for optimal control of wealth inequalities

    Get PDF
    We introduce and discuss optimal control strategies for kinetic models for wealth distribution in a simple market economy, acting to minimize the variance of the wealth density among the population. Our analysis is based on a finite time horizon approximation, or model predictive control, of the corresponding control problem for the microscopic agents' dynamic and results in an alternative theoretical approach to the taxation and redistribution policy at a global level. It is shown that in general the control is able to modify the Pareto index of the stationary solution of the corresponding Boltzmann kinetic equation, and that this modification can be exactly quantified. Connections between previous Fokker-Planck based models and taxation-redistribution policies and the present approach are also discussed
    corecore