We investigate pattern formation in self-oscillating systems forced by an
external periodic perturbation. Experimental observations and numerical studies
of reaction-diffusion systems and an analysis of an amplitude equation are
presented. The oscillations in each of these systems entrain to rational
multiples of the perturbation frequency for certain values of the forcing
frequency and amplitude. We focus on the subharmonic resonant case where the
system locks at one fourth the driving frequency, and four-phase rotating
spiral patterns are observed at low forcing amplitudes. The spiral patterns are
studied using an amplitude equation for periodically forced oscillating
systems. The analysis predicts a bifurcation (with increasing forcing) from
rotating four-phase spirals to standing two-phase patterns. This bifurcation is
also found in periodically forced reaction-diffusion equations, the
FitzHugh-Nagumo and Brusselator models, even far from the onset of oscillations
where the amplitude equation analysis is not strictly valid. In a
Belousov-Zhabotinsky chemical system periodically forced with light we also
observe four-phase rotating spiral wave patterns. However, we have not observed
the transition to standing two-phase patterns, possibly because with increasing
light intensity the reaction kinetics become excitable rather than oscillatory.Comment: 11 page