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Four-phase patterns in forced oscillatory systems
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We investigate pattern formation in self-oscillating systems forced by an external periodic perturbation.
Experimental observations and numerical studies of reaction-diffusion systems and an analysis of an amplitude
equation are presented. The oscillations in each of these systems entrain to rational multiples of the perturba-
tion frequency for certain values of the forcing frequency and amplitude. We focus on the subharmonic
resonant case where the system locks at one-fourth the driving frequency, and four-phase rotating spiral
patterns are observed at low forcing amplitudes. The spiral patterns are studied using an amplitude equation for
periodically forced oscillating systems. The analysis predicts a bifurcatigth increasing forcing from
rotating four-phase spirals to standing two-phase patterns. This bifurcation is also found in periodically forced
reaction-diffusion equations, the FitzHugh-Nagumo and Brusselator models, even far from the onset of oscil-
lations where the amplitude equation analysis is not strictly valid. In a Belousov-Zhabotinsky chemical system
periodically forced with light we also observe four-phase rotating spiral wave patterns. However, we have not
observed the transition to standing two-phase patterns, possibly because with increasing light intensity the
reaction kinetics become excitable rather than oscillatory.

PACS numbes): 47.54+r, 47.70—n

I. INTRODUCTION Recent experiments using the ruthenium-catalyzed
Belousov-Zhabotinsky reaction forced by periodic illumina-
Spatially extended systems characterized by the coexistion revealed subharmonic resonance regimeswo=2:1,
ence of two or more stable states compose a broad class 82, 3:1, 4:1, with two(2:1), three(3:2,3:1), and four(4:1)
nonequilibrium pattern forming systems. The most commorstable phase stat¢2,16|. Patterns consisting of alternating
multistable systems are those that exhibit bistabiligyg.,  Spatial domains with a phase shift ofare observed within
chemical systemgl, 2], vertically vibrated granular systems the 2:1 resonance regime, and three-phase patterns with spa-
[3], and binary fluid convectiofd]). Spatial patterns in these tial domains phase-shifted by23 are observed within the
systems involve alternating domains of the two different3:1 resonance regime,16,17. The 4:1 resonance is more
stable states, which are separated from each other by intepomplicated. Adjacent spatial domains may differ in phase
faces or fronts. Bistable systems support a variety of patternRy eithera or 7/2. As a result the asymptotic patterns that
from spiral waves to splitting spots and labyrinfis-9]. In  develop can have four phases, two phases, or a mixture of
some systems, such as the ferrocyanide-iodate-sulfite reavo and four phases.
tion [6,10] and the oxidation of carbon monoxide on a plati-  In this paper we explore pattern formation in the 4:1 reso-
num surface[11], the bistability arises from the nonlinear nance regimes. In Sec. |l we describe our experimental ob-
nature of the system. In other systems such as liquid crystaRgrvations of four phase patterns in the 4:1 resonance band of
in a rotating magnetic fielfll2—14 and periodically forced the forced Belousov-Zhabotinsky reaction. We then present
oscillators[15], the bistability arises from a broken symme- an analytical study of the 4:1 resonar{ds,19 in Sec. IIl.
try. The study is based on a normal form, or amplitude equation,
Periodically forced oscillatory systems are convenient@pproach which is strictly valid only close to the Hopf bifur-
systems for exploring multistability in pattern formation cation of the unforced oscillatory system. In order to test the
since the number of coexisting stable states can be controllednalytical predictions and to study the behavior of forced
by changing the forcing frequency. Applying a periodic forcesystems far from the Hopf bifurcation, which is the case in
of sufficient amplitude and at a frequeney~ (n/m)wg, the experiments, we conduct numerical studies of two
wherew, is the oscillation frequency of the unforced system,reaction—diffusion modeléhe FitzHugh-Nagumo and Brus-
entrains the system to the forcing frequency. The entrainegelatol. We describe the models and results in Sec. IV. In
system ha: stable states each with the same oscillationSec. V we discuss and compare the analytical and numerical
frequency but in one of oscillation phases separated by results with the experimental observations.
multiples of 2/n. We refer to then different phase shifted

states as "phase states” of the system. Il. THE PERIODICALLY FORCED BELOUSOV-
ZHABOTINSKY REACTION

*Electronic address: aric@lanl.gov We use a light-sensitive form of the Belousov-
TElectronic address: ehud@bgumail.bgu.ac.il Zhabotinsky(BZ) reaction, a chemical reaction system with
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FIG. 2. A rotating four-phase spiral wave observed in the forced
FIG. 1. The temporal power spectrum of a 4:1 resonant patterBZ reaction.(a) A 5.4x 5.4 mn? region of a reactor image showing
from the BZ experiment fol =426 W/nf. The peak atw/27 a 4:1 resonant spiral pattern. The white, light gray, dark gray, and
=0.0154 Hz is the response at/4. black domains represent the four phase states of the syé&iem.
plot of the complex Fourier amplitude at w;/4 for each pixel of
oscillatory kinetics, to study the 4:1 subharmonic resonancene pattern. The forcing intensity is=426 W/nf and the forcing
patterns. In the experiments, the chemicals of the BZ systeriequency isw:/2m=0.062 Hz. The data were filtered to isolate the
diffuse and react within a 0.4 mm thick porous membraneresponse ai/4 from the higher harmonics.
The system is maintained in a nonequilibrium steady state by
a continuous flow of fresh, well mixed reactant solutionsnamic range of forcing intensity in the 4:1 resonance re-
[20,21] on either side of the thin membrane where the patgion. The range of forcing intensity is limited byl alepen-
terns form. The unforced pattern is a rotating spiral wave oflence of the reaction kinetics. Ads increased, the reaction

ruthenium catalyst concentration. kinetics shifts from oscillatory to excitable.

We periodically force the system using spatially homoge-
neous square wave pulses of ||ght with inten$jtwhere| is lIl. AN AMPLITUDE EQUATION FOR FORCED
the square of the forcing amplitude, and pulse frequency OSCILLATORY SYSTEMS

(w¢/27 in Hz). We choose the frequenay; to be approxi-

mately four times the natural frequency of the unforced os- We study the experimental observations shown in the pre-

cillations. ceding section using a normal form equation for the ampli-
To determine the temporal response of a pattern when it igide of thew/4 mode. Consider first an oscillatory system

periodically perturbed at a particular pair df ;) param-  responding to the forcing abs/n wheren is integer. We

eter values we collect a time series of evenly sampled patter@ssume the system is near the onset of oscillations, i.e., close

snapshots; a 6060 pixel region of the 648 480 pixel im-  to @ Hopf bifurcation. The set of dynamical fielddescrib-

age. We sample at a rate of approximately 30 framesing the spatio-temporal state of the system can be written as

oscillation and calculate the fast Fourier transform for the

time series of each pixel. The power spectrum of each pixel u=UpA expliwst/n)+c.c+---, (1)

is determined. An average over all pixels provides a power

spectrum of a pattern, as shown in Fig. 1. The 4:1 resonar¥hereuy is constantA is a slowly varying complex ampli-

patterns exhibit a dominant peak(a;/4 in the power spec- tude, and the ellipseS denote other resonances with smaller

trum. Higher order harmonics are also present. contributions. The slow space and time evolution of the am-
An example of a 4:1 resonant pattern observed in th@litude A is described by the forced complex Ginzburg-

experiments is shown in Fig. 2. The rotating four-phase spilandau equation15,18,19,

ral wave in Fig. 2a) is the asymptotic state of the system.

This image is a plot of the phase angle ajgwherea  A.=(u+iv)A+(1+ia)A,~(1-iB)|AIPA+y,A* ("1,

=a(x,y) is the complex Fourier amplitude associated with 2

the w;/4 mode for each pixelx,y) in the pattern. The four

domains(white, light gray, dark gray, and blackorrespond 400
to the four phase states with oscillation phases separated by
0, #/2, =, and 37/2 with respect to the forcing. @ 300
Figure 2Zb) is a different representation of the same data. =
In this case the responseat w/4 is plotted in the complex L.;“ 200
plane instead of th&—y plane. This representation of the 5
data allows us to see the distribution of the oscillation am- 2 100
plitude and phase at all pixels in the pattern. The four corners &
of the diamond shape in Fig(ld are the four stable phase 0
states. The edges of the diamond shape in Fif) are ' _7;/2 (') n}2 o

formed from pixels at phase-fronts separating adjacent do-

mains. The majority of pixels in the pattern are in one of the

four corner states as the histogram of phase angles in Fig. 3 FIG. 3. A histogram showing the distribution of phase angles in

illustrates. the pattern in Fig. 2. The four peaks indicate the high density of
Traveling four-phase patterns exist over the entire dy-points in each of the four phase states.

phase angle
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FIG. 5. A rotating four-phase spiral wave in the forced complex
‘ Ginzburg-Landau equatior{a) argB(x,y)) in the x-y plane. (b)

1 0 1 B(x,y) in the complex plane. Parametens=0.6, 1,=0.1, a=f
=0.
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FIG. 4. The four phase statésolid circleg connected by phase
fronts in the forced complex Ginzburg-Landau equatign Two  For the particular parameter valye= 1/3 thew/2 fronts have
types of fronts between phase states are possible; the solid lines dfee simple forms
7 fronts and the dashed lines a2 fronts.

B4*,2:Bz tanhx. (5)

B, 1= :\/3[1+i+(1—i)tanhx],
where u is the distance from the Hopf bifurcation,is the

detur_1ing from the exact resonance, apgl is the forcing BlH4=%\/§[l—i—(1+i)tanhx],
amplitude. 6
For the special casa=4 (the 4:1 resonangewe can ©

. . . Bs .,=—B; .4,
eliminate the parameter by rescaling time, space, and am- 32 14

plitude ast=u7, x=\/u/2z andB=A\/u to obtain By .a=—B, 1.
By=(1+ivg)B+3(1+ia)B,—(1-iB)|B|*B+yB*?3, Additional front solutions follow from the invariance of Eq.
(3 (4) under reflectionx— —x.

Figure 4 shows these front solutiofisarametrized by the
wherevy=v/u. Equation(3) also applies to the 4:3 subhar- spatial coordinate) in the complexB plane. For example,
monic resonance. This follows from symmetry consider-the + front By, is represented by the solid line connecting
ations: the system is symmetric to discrete time translationfhe stateB; to the stateB; asx increases from-o to +.

t—t+(27/ wf) =t+(37/2w). The amplitude equation must The #/2 front B, ., is represented by the dashed line con-
then be invariant under the transformatiorB necting the stat®, to the stateB; .

—Bexp(3mi/2). The only forcing term satisfying this re-  |n the special case of the gradient systéh all front
quirement to cubic order iB*°. solutions are stationary. The more general case with nongra-
dient terms in Eq(3) can be studied by perturbation theory
A. Phase states and phase fronts when Vo, &, andﬂ are smal[19] The results of this analysis

. o . show that ther/2 fronts become propagating fronts while the
Constant solutions of Eq3) indicate that the system is  fronts remain stationary.

te_ntraltne(él to(;?e forﬁlngihTtr;]ere are four sif[tat()jle Eo?sﬁﬂt(??lu' Figure 5 shows a rotating four-phase spiral wave from a
lons 10 £g.(5), each wi € Same amplitude but wi ™ numerical solution of the two-dimensional versip2?] of

fehrent P?«’::SGS,S?\"@II, which cqrrespf)on(tjhto the lfc;ur stablde Eq. (3). The phase diagram in the complBxplane, shown in
phase states. Simple expressions for these solutions an 9. 5(b), has fourm/2 fronts: By 4, By .5, By ,, and

act forms for the front solutions connecting them in space arey The amplitudeB corresponds to the complex Fourier
2—1-

obtained from the gradient version of E@), wherevo=a amplitudea measured in the experiment; the four-phase spi-

=p=0: ral pattern in Fig. 2 and the corresponding diamond shape in
B,=B+1B,,—|B|2B+ yB*3. (4) the complex plane are predicted by the amplitude equation.

The stable phase statésnstant solutionsof Eq. (4) for O B. A phase-front instability

<y<1l are B;,B,,B3,B5)=(N\,iN,—\,—iN) where \ The existence of the stationasyfront solutions suggests

=1/J1- . They are represented as solid circles in Fig. 4. that standing two-phase patterns similar to those found under
Front solutions connecting pairs of these states are of tw@:1 resonant conditiong2,16] may be observed in the 4:1
types, fronts between states separated in phaser land  resonant case provided thefronts are stable. Standing two-
fronts between states separated in phase/By(hereafterm  phase patterns have not been observed in experiments in the
fronts and#/2 frontg. The m-front solutions are 4:1 resonance band so the stability »ffronts becomes a
question. Stability conditions forr-front solutions were
B;_ ;=B tanhx, studied in Refs[18], [19]. The results are described below.
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FIG. 6. (a) The phase, ar) of a pair of #/2 fronts,B;_,, andB,_,;. The distance between the two fronts is defined to ke(l® The
potentialV(x) describes the interaction between twi(2 fronts. Fory> y. the extremum ag=0 is a minimum angy converges to 0. For
v<1v. the extremum is a maximum angddiverges to+«. At y= vy, the potential is flat and there is no interaction betweéh fronts.

Consider the pair ofr/2 fronts shown in Fig. @). They C. Effects of the phase-front instability on pattern formation
are separated by a distancg &nd connect the phase states
B; and B; [23]. For y~1/3, the solutiong6) are good ap-
proximations tom/2-front solutions. The pair of fronts can be
represented as

The stability of stationaryr fronts for y> vy, suggests the
predominance of standing two-phase patterns. These patterns
involve alternating domains with oscillation phases shifted
by 7 with respect to one another. Domains shifted 42

B(X;{,x)~B3_o(Xx—+x)+By 1(x—¢—x)—i\, (7) ~ May exist as transients; the interactions betwedronts and

72 fronts always producer/2 fronts which are stable but

where( is their mean position. For large separation distancegttract one another and coincide to form stationarfyonts.
(x>1) B=B; ., whenx~{—y andB~B,_, whenx~(¢  Since then/2 fronts are traveling these transients are rela-
+x, and Eq.(7) represents a pair of isolates/2 fronts.  tively short. For y<y. the interactions between the/2
When the distance between the pair decreases to zero (fronts are repulsive. The fronts are unstable and split into
—0), thenB~B;_,; and Eq.(7) approaches a-front solu-  pairs of traveling=/2 fronts. As a result, traveling waves
tion. with all four phase states are the asymptotic pattern.

The stability of 7 fronts is determined by the interaction
between a pair ofr/2 fronts. Stabler fronts are the result of
an attractiverr/2 front interaction; ther/2 fronts attract each
other and the distance between them decreases to zero. A
repulsive interaction implies unstabtefronts. The potential
V(x) that governs this interactioi8,19,

o (2

Im(B)
0

v .
X= " dy (8)

is shown in Fig. €b) for variousvy values. The potential has
a single maximum fory<<+y.= 1/3 which represents a repul-
sive interaction betweem/2 fronts and the instability ofr
fronts. It has a single minimum foy> vy, which indicates
the attractive interaction betweeri2 fronts and the resulting
stability of 7 fronts. At vy, the potential is flatv=0, for all
x values. At this parameter value, pairs«® fronts do not
interact and there is a continuous family of front pair solu-
tions with arbitrary separation distanceg, 1 Eq. (7). This
degeneracy of solutions at the critical poipt vy, is re-
moved by adding higher order terms to the amplitude equa-
tion, as we discuss in Sec. llID.

To summarize, stationary-front solutions of Eq(3) are
stable for forcing amplitudey>y.=1/3. Whenv is de- X
creased pasy.,  fronts lose stability and split into pairs of

propagatingm/2 fronts. The splitting Process is S_hown in Fig. dimension. Left: The space-time plggolutions of Eq.(3)] shows

7 where theB;_; 7 front evolves into the pair of stable he spjitting of an unstabler front into a pair of traveling/2
traveling 7/2 fronts,B; ., andB,_; wheny<y.. The par-  fronts. Then/2 front pairs enclose the dark grey domain that has an
ity symmetryxy— — y makes evolution toward the pd, .4 oscillation phase shifted by/2 with respect to the black and light
and B,_,3 equally likely. The splitting occurs for forcing gray domains. Right: Snapshots at times0, t=100, andt
amplitudes arbitrarily close tg., although in that case the =300, showing the instability in the complékplane. Parameters
time scale of this process becomes very long. in Eq. (3): ¥y=0.02,y=0.3, a=B=0.
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FIG. 7. An example of the phase-front instability in one space
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' (d) FIG. 9. The degeneracy of the poten¥dly) at y= vy, is broken
by adding higher order terms @®). In the intermediate range of
Im(B) y~1vy. two scenarios are possible gsis decreased through the
_____________ - o bifurcation.(a) The y=0 solution loses stability in a pitchfork bi-
furcation aty, to a pair of solutions that move taw. (b) The y
=0 solution remains stable while the= to solutions acquire
stability and lose stability only below, . In both cases the defor-

mations from a single minimum to a single maximum occur within

0 a small range ofy of order u<1.

X Re(B)
contributions suggests the possible existence of a small

FIG. 8. Numerical solution of a two-dimensional version of Eq. range, of ordeg.< 1, surroundingy, where slowly traveling

(3) showing the evolution of a rotating four-phase spiral wave intotWO_ hase patterns exist
a standing two-phase pattern wheris increased above.. The TPF]) hi hp d .'b . E h BI4B
frames on the left show arB) in the x-y plane. The frames on the e higher order contributions to E(B), suc ad |

right show the complexB plane.(a) The initial four-phase spiral or |B|ZBXX' lift the degeneracy of the 'nSt?b'"ty' Flgure 9
wave separated by/2 fronts computed withy< vy, . (b) Wheny is shows two possible scenarios for the front interaction poten-
increased abovey, two pairs of m/2 fronts begin to attract one tidl V- when higher order contributions to E@) are included
another.(c) As the 7/ fronts attract they collapse into a stationary (Poth scenarios lift the degeneracy of the phase-front insta-
 front which grows in length(d) The final standing two-phase bility). In one case, shown in Fig(&), the stationaryr front
pattern. Parametery=0.6, v,=0.1, a= =0, y.,~1/3. loses stability to a pair of counter-propagatifrgronts in a
pitchfork bifurcation which leads to double-minimum poten-

A typica| two-dimensional trave"ng pattern inv0|ving all tial. This scenario is a nonequilibrium Ising—BIoch pitCthfk
four phases is the four-phase spiral wave shown in Fig. 2 anBifurcation of 7 fronts like the one found in the 2:1 reso-
in Fig. 5. Figure 8 shows the effect of the phase-front instanance casg24] and in other bistable systern$3,25-21. It
bility on a four-phase spiral wave. The initial spiral wave leads to slow traveling two-phase patterns in the range where
[Fig. 8(@)] was obtained by solving a two-dimensional ver- %S neary.. In the scenario shown in Fig(19, the station-
sion of Eq.(3) for y<1y,. The following three framefFigs. ~ ary = front loses stability via a subcritical bifurcation which
8(b)—8(d)] are snapshots showing the evolution of the initialleads to double-maximum potential. In this case there is a
four-phase spiral wave into a standing two-phase pattern afange of stabler fronts coexisting with pairs of separated
ter y is increased above,. The evolution begins at the /2 fronts. This allows the possibility of patterns containing
spiral core where the attractive interactions between pairs d¥oth 7 fronts andm/2 fronts. Beyond this range the potential
/2 fronts are the strongest. The coalescencer/@ffronts  has a single maximum and fronts split into pairs ofm/2
leaves behind a stationary front which grows in length fronts. Both scenarios persist over a rangeyadf order u,
until no /2 fronts are left, as is evident by the single line in the distance from the Hopf bifurcation.
the complexB plane shown in Fig. @).

IV. NUMERICAL SOLUTIONS OF PERIODICALLY
D. Higher order terms in the amplitude equation FORCED REACTION-DIFFUSION MODELS

From the analysis of Eq3) we have shown that two- The amplitude equation analysis predicts the existence of
phase patterns must be standing and four-phase patterns masphase-front instability near the Hopf bifurcation and hints
be traveling. The analysis of the equation with higher ordemt possible modifications of the instability as the distance
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from the Hopf bifurcation is increased. Our objectives in this o __(»)
section are to test the existence of the instability in reaction—
diffusion models and to use the models to examine how the
instability is modified far from the Hopf bifurcation. o @0 Im@
A. The FitzHugh-Nagumo model ®
We study a periodically forced version of the FitzHugh- & (b
Nagumo equations /\
u=u—(1+T coswst)ud—v+V?au, 0 Im(a)
9
vi=e(u—a)+ 6V,
The unforced model is obtained by settihig=0. The uni- ©)
form state (1,v)=(0,0) undergoes a Hopf bifurcation ass
decreased pask.=1/a;. The Hopf frequency iswy ® 0 Im(a)
= e.—1 and the distance from the Hopf bifurcation is mea-
sured byu=(e.—€)/e..
We compute the numerical solutions of Ef) in the 4:1 .
resonance banddJ(;~4wy) and close to the Hopf bifurcation 0 wox 200 Re(a)

(u<€1). Close to the Hopf bifurcation the amplitude equa-
tion analysis applies. We expect to find a critical value of the  rG. 10, The phase-front instability in the 4:1 resonance of the
forcing amplitudel’; corresponding to the phase-front insta- forced FitzHugh-Nagumo modéEq. (9)] close to the Hopf bifur-
bility point vy, in the amplitude equation. For the FitzHugh- cation. Left: a space-time plot of am)(wherea is the complex
Nagumo equations thi§; will, in general, depend on the Fourier coefficient of the 4:1 respongequivalent toA in Eq. (2)].
parameterse, 8, a;, and w;. In the following we fix a; At t=0 the forcing amplitude was decreased below The initial
=1/2, 5=0, w;=4 and only varye (the parameter that con- standings front becomes unstable and splits into a pair of traveling
trols the distancex to the Hopf bifurcation and the forcing  @/2 fronts. Thew/2 fronts separate the black, dark gray, and light
amplituder. gray domains where the oscillation phase is shifted successively by
Close to the Hopf bifurcation we find stable stationary /2. Right: The same data depicted in the comgepane at three
fronts for forcing amplitude§”>T'.. Below I',, stationary Successive timest=0, t=560T;, and t=4160T, where T;
 fronts are unstable and split into pairs®® fronts. Figure =27/ . (&) The initial standing front is unstable(b) The front
10 illustrates this in a numerical solution of a one-develops an intermediate phage) Two /2 fronts are formed.
dimensional version of Eq9). A stable #front pattern js  Parametersia; =0.5, e=1.95, 6=0, I'=2.0, v;=4.0, and
generated from random initial conditions with>T,. Att  — 2-025. The phase-front instability point i5.~2.15 and »
=0 I' is decreased beloW, ; the 7 front becomes unstable ~0.012.
and splits into a pair of traveling/2 fronts. N . ] o
The numerically computedl, for the solution in Fig. 10 fransition. Since ther/2 fronts are attracting the ;plral is
is T,~2.15. Sincel', is a function of the parameters in Eq. unstable and two of the four pha_lse domains shrink until a
(9), we define a new parametey=(I'.—T')/T, that mea- Standing two-phase pattern remains. _
sures the distance from the phase-front instability point. In The numerical solutions of the forced FitzHugh-Nagumo
Fig. 10, 7~0.012 indicating that we are just beyond the equations support the pred|gt|ons _of the amplitude equation
critical point. a_n.aly'sus. Close to the Hopf blfur(_:atlon, the phase_—front msta—
Farther from the Hopf bifurcation we find that the phase-Pility is found (compare Fig. 7 with Fig. 10 and Fig. 8 with
front instability still exists. Figure 11 shows the the evolution Fi9- 12. Far from the Hopf bifurcation the instability per-
of an initial unstable stationary front with parameters cho- SiSts. The effects of higher order terms in the amplitude
sen so the system is far from the Hopf bifurcation but at thetquation are valid even far from the Hopf bifurcation (
same distancey~0.012, from the phase-front instability. =0-25); the phase-front instability near the Hopf bifurcation
The asymptotic solution is a slowly propagatiagfront, in (as ,L'L—>O) turns into an Ising-Bloch pltchfork bifurcation.
contrast to a pair of separated? fronts that develop close to Stationary s fronts bifurcate to travelingr fronts and not
the Hopf bifurcationsee Fig. 10 The range of forcing am- 72 fronts.
plitudes near”; over which these travelingr fronts exist
increases withu. At smaller forcing amplitudes, below the B. The Brusselator model
range of travelingr fronts, 7 fronts split into pairs ofn/2 . )
fronts and four phase traveling patterns prevail. We tested the transition from four_-phase traveling waves
In two dimensions the typical traveling wave pattern for©©_two-phase standing waves using another reaction—
I'<T, is a rotating four-phase spiral wave. Figure(d2 diffusion model, the forced Brusselator,
show_s a stable _f(_)ur-phas_e spir_al wave genergtg_d from ran- Ui=c—du+[1+T coswt]u?v+V2u,
dom initial conditions. Using this spiral as an initial condi-
tion, we increasd’ abovel'; and the system evolves into a
two-phase standing pattern. Figures(t212d) show the vi=du—u?v+ 6V.

(10
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FIG. 11. The phase-front instability in the 4:1 resonance of the
forced FitzHugh-Nagumo modéEqg. (9)] far from the Hopf bifur- 0
cation. Left: a space—time plot of ag)( At t=0 the forcing am-
plitude was decreased beloli,. The initial standingz front is
unstable and starts traveling to the right. In this case, no intermedi- ) )
ate phase develops. Right: The same data depicted in the complex 0 96 0
plane at three successive times;0, t=3000r;, andt=6000T;,
whereT;=2m/w; . (a) The initial standingr front. (b) The stand- X Re(a)

ing 7 front is unstable and begins to travét) The asymptotic
pattern is a travelingr front. Parametersa;=0.5, e=1.5, =0,
I'=1.585,w;=4.0, andu=0.25. The phase-front instability point
is 'c~1.605 andn~0.012.

The unforced Brusselator, obtained by setting 0, has a
stationary uniform stateu,v)=(c,d/c) which undergoes a
Hopf bifurcation ad is increased past,= 1+ c2. The Hopf
frequency iswy=c and the distance from the Hopf bifurca-
tion is measured by.=(d—d;)/d..

FIG. 12. Numerical solution of the forced FitzHugh—Nagumo
equations(9) in 4:1 resonance shown at four successive times
=0, t=11600r;, t=13600r;, and t=15600"; where T;
=27l w; . The frames on the left show ag)(in thex-y plane. The
frames on the right show the complesplane.(a) The initial spiral
wave of four phases separated B2 fronts is computed with’
<I'.. (b) WhenT is increased abovE two pairs of #/2 fronts
begin to attract one anothekc) As the #/2 fronts attract they col-
lapse into a stationary- front which grows in length(d) The final
pattern is two phase domains separated by a statiomafiont.

We studied Eq(10) in the 4:1 resonance band using a Parametersa,;=0.5, e=1.5, =0, '=2.5, andw;=4.0.

numerical partial differential equation solvg28,29. We
found that below a critical forcing amplitudé, the solutions
are rotating four-phase spiral waves consistingr{# fronts

amplitude equation model and the FitzHugh-Nagumo model,
indicates the existence of the phase-front instability in the

[see Fig. 18)]. The four-phase spiral wave was generatedBrusslator model.

by one of two following initial conditions: a spiral wave
computed from the unforced’=0) Brusselator equations,
or the linear functions

u(x,y)=y/L, O0sysL,
v(X,y)=—2x/L+40<x<L,

whereL =632.5.

Above I'; pairs of /2 fronts attract each other and the

core of the spiral evolves into an expandifdront. Figures
13(b)—13(d) illustrate this process. When thg?2 fronts dis-

V. CONCLUSIONS

We studied 4:1 resonant patterns in Belousov-
Zhabotinsky chemical experiments, in an amplitude equation
for forced oscillatory systemghe forced complex Ginzburg-
Landau equation and in forced FitzHugh-Nagumo and
Brusselator reaction-diffusion models. At low forcing ampli-
tudes all of these systems exhibit traveling four-phase pat-
terns.

An analysis of a forced complex Ginzburg—Landau equa-
tion, derivable from periodically forced reaction—diffusion
systems near a Hopf bifurcation, predicts traveling four-

appear, the resulting asymptotic pattern is two states sepghase patterns at low forcing amplitude and standing two-

rated by a stationaryr front. The transition from a four-

phase patterns at high forcing amplitude. The transition

phase spiral wave to a two-phase stationary pattern, as in theechanism between these two patterns is a degenerate
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(a) cal point where higher order terms in the amplitude equation
Im(a) become important. We found that these terms lift the degen-
eracy of the instability and introduce a narrow intermediate
0 regime. In this regime we found both slowly traveling
fronts and the coexistence of stable stationarfronts and
repelling pairs ofn/2 fronts.
We further investigated this phase-front instability using
the FitzHugh-Nagumo and the Brusselator reaction—

474

158

45 Im(a) diffusion models. These models exhibit the instability even
far from the Hopf bifurcation where the amplitude equation
y 0 is not known to be valid. Near the Hopf bifurcation the in-

stability, atl';, separates patterns of stationarjronts from
patterns of travelingr/2 fronts. In two dimensions, a rotating
four-phase spiral wave evolves into a two-phase standing
pattern whenI" is increased past’.. In the FitzHugh-
Im(a) Nagumo model we found, far from the Hopf bifurcation, an
intermediate range nedt. where travelings front patterns
were observed. These numerical results are in full agreement
with the theoretical predictions based on the amplitude equa-
tion.
The standing two-phase patterns found in the amplitude
equation and in the FitzHugh-Nagumo and Brusselator mod-
Im(a) els were not observed in the experiments, which were con-
ducted far from the Hopf bifurcation. However, the existence
0 of the phase-front instability far from the Hopf bifurcation
was found in the numerical studies of the FitzZHugh-Nagumo
and Brusselator models. We conclude that the large distance
from the Hopf bifurcation does not explain the absence of
158 474 0 standing two-phase patterns in the experiments. A more
likely explanation is the limited dynamic range of the forcing
& Re(a) amplitude in the experiments. Experiments show that the dy-
FIG. 13. Numerical solutions of the forced Brusselator model"@MICS of .the_ BZ reaction arg depgndent; as the forcm_g_
(10) showing snapshots at=0, t=748T,, t=1000T,, and t amphtudc_a is mcreaseq, the (_jyn:_slmms undergo a tr.ans.|t|on
=5544T, whereT;=2m/w; . The rotating four-phase spiral wave, [T0M oscillatory to excitable kinetics. The excitable kinetics
computed withl <T'; (I'=0.11), transforms into a standing two- are not described by the amplitude equation or by the
phase pattern aftd? is increased padt, (I'=0.13). The frames in  reaction-diffusion models in the parameter ranges we stud-
the left-hand column show am)(in the x—y plane wherea is the  ied.
complex Fourier coefficient of the 4:1 mode. The right-hand col-
umn shows the same data in the compéeplane. Parameters: ACKNOWLEDGMENTS
=0.5,d=1.5,5=5.0, ws=1.69, andu=0.20. The numerical solu-
tion grid was 12& 128 points.
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