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Four-phase patterns in forced oscillatory systems
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We investigate pattern formation in self-oscillating systems forced by an external periodic perturbation.
Experimental observations and numerical studies of reaction-diffusion systems and an analysis of an amplitude
equation are presented. The oscillations in each of these systems entrain to rational multiples of the perturba-
tion frequency for certain values of the forcing frequency and amplitude. We focus on the subharmonic
resonant case where the system locks at one-fourth the driving frequency, and four-phase rotating spiral
patterns are observed at low forcing amplitudes. The spiral patterns are studied using an amplitude equation for
periodically forced oscillating systems. The analysis predicts a bifurcation~with increasing forcing! from
rotating four-phase spirals to standing two-phase patterns. This bifurcation is also found in periodically forced
reaction-diffusion equations, the FitzHugh-Nagumo and Brusselator models, even far from the onset of oscil-
lations where the amplitude equation analysis is not strictly valid. In a Belousov-Zhabotinsky chemical system
periodically forced with light we also observe four-phase rotating spiral wave patterns. However, we have not
observed the transition to standing two-phase patterns, possibly because with increasing light intensity the
reaction kinetics become excitable rather than oscillatory.

PACS number~s!: 47.54.1r, 47.70.2n
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I. INTRODUCTION

Spatially extended systems characterized by the coe
ence of two or more stable states compose a broad clas
nonequilibrium pattern forming systems. The most comm
multistable systems are those that exhibit bistability~e.g.,
chemical systems@1,2#, vertically vibrated granular system
@3#, and binary fluid convection@4#!. Spatial patterns in thes
systems involve alternating domains of the two differe
stable states, which are separated from each other by i
faces or fronts. Bistable systems support a variety of patte
from spiral waves to splitting spots and labyrinths@5–9#. In
some systems, such as the ferrocyanide-iodate-sulfite r
tion @6,10# and the oxidation of carbon monoxide on a pla
num surface@11#, the bistability arises from the nonlinea
nature of the system. In other systems such as liquid crys
in a rotating magnetic field@12–14# and periodically forced
oscillators@15#, the bistability arises from a broken symm
try.

Periodically forced oscillatory systems are conveni
systems for exploring multistability in pattern formatio
since the number of coexisting stable states can be contro
by changing the forcing frequency. Applying a periodic for
of sufficient amplitude and at a frequencyv f'(n/m)v0 ,
wherev0 is the oscillation frequency of the unforced syste
entrains the system to the forcing frequency. The entrai
system hasn stable states each with the same oscillat
frequency but in one ofn oscillation phases separated b
multiples of 2p/n. We refer to then different phase shifted
states as ‘‘phase states’’ of the system.

*Electronic address: aric@lanl.gov
†Electronic address: ehud@bgumail.bgu.ac.il
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Recent experiments using the ruthenium-catalyz
Belousov-Zhabotinsky reaction forced by periodic illumin
tion revealed subharmonic resonance regimesv f :v052:1,
3:2, 3:1, 4:1, with two~2:1!, three~3:2,3:1!, and four~4:1!
stable phase states@2,16#. Patterns consisting of alternatin
spatial domains with a phase shift ofp are observed within
the 2:1 resonance regime, and three-phase patterns with
tial domains phase-shifted by 2p/3 are observed within the
3:1 resonance regime@2,16,17#. The 4:1 resonance is mor
complicated. Adjacent spatial domains may differ in pha
by eitherp or p/2. As a result the asymptotic patterns th
develop can have four phases, two phases, or a mixtur
two and four phases.

In this paper we explore pattern formation in the 4:1 re
nance regimes. In Sec. II we describe our experimental
servations of four phase patterns in the 4:1 resonance ban
the forced Belousov-Zhabotinsky reaction. We then pres
an analytical study of the 4:1 resonance@18,19# in Sec. III.
The study is based on a normal form, or amplitude equat
approach which is strictly valid only close to the Hopf bifu
cation of the unforced oscillatory system. In order to test
analytical predictions and to study the behavior of forc
systems far from the Hopf bifurcation, which is the case
the experiments, we conduct numerical studies of t
reaction–diffusion models~the FitzHugh-Nagumo and Brus
selator!. We describe the models and results in Sec. IV.
Sec. V we discuss and compare the analytical and nume
results with the experimental observations.

II. THE PERIODICALLY FORCED BELOUSOV-
ZHABOTINSKY REACTION

We use a light-sensitive form of the Belouso
Zhabotinsky~BZ! reaction, a chemical reaction system wi
3790 ©2000 The American Physical Society
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PRE 62 3791FOUR-PHASE PATTERNS IN FORCED OSCILLATORY SYSTEMS
oscillatory kinetics, to study the 4:1 subharmonic resona
patterns. In the experiments, the chemicals of the BZ sys
diffuse and react within a 0.4 mm thick porous membra
The system is maintained in a nonequilibrium steady state
a continuous flow of fresh, well mixed reactant solutio
@20,21# on either side of the thin membrane where the p
terns form. The unforced pattern is a rotating spiral wave
ruthenium catalyst concentration.

We periodically force the system using spatially homog
neous square wave pulses of light with intensityI, whereI is
the square of the forcing amplitude, and pulse frequencyv f
~v f /2p in Hz!. We choose the frequencyv f to be approxi-
mately four times the natural frequency of the unforced
cillations.

To determine the temporal response of a pattern when
periodically perturbed at a particular pair of (I ,v f) param-
eter values we collect a time series of evenly sampled pat
snapshots; a 60360 pixel region of the 6403480 pixel im-
age. We sample at a rate of approximately 30 fram
oscillation and calculate the fast Fourier transform for
time series of each pixel. The power spectrum of each p
is determined. An average over all pixels provides a pow
spectrum of a pattern, as shown in Fig. 1. The 4:1 reson
patterns exhibit a dominant peak atv f /4 in the power spec-
trum. Higher order harmonics are also present.

An example of a 4:1 resonant pattern observed in
experiments is shown in Fig. 2. The rotating four-phase s
ral wave in Fig. 2~a! is the asymptotic state of the system
This image is a plot of the phase angle arg(a), where a
5a(x,y) is the complex Fourier amplitude associated w
the v f /4 mode for each pixel~x,y! in the pattern. The four
domains~white, light gray, dark gray, and black! correspond
to the four phase states with oscillation phases separate
0, p/2, p, and 3p/2 with respect to the forcing.

Figure 2~b! is a different representation of the same da
In this case the responsea at v f /4 is plotted in the complex
plane instead of thex–y plane. This representation of th
data allows us to see the distribution of the oscillation a
plitude and phase at all pixels in the pattern. The four corn
of the diamond shape in Fig. 2~b! are the four stable phas
states. The edges of the diamond shape in Fig. 2~b! are
formed from pixels at phase-fronts separating adjacent
mains. The majority of pixels in the pattern are in one of t
four corner states as the histogram of phase angles in F
illustrates.

Traveling four-phase patterns exist over the entire

FIG. 1. The temporal power spectrum of a 4:1 resonant pat
from the BZ experiment forI 5426 W/m2. The peak atv/2p
50.0154 Hz is the response atv f /4.
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namic range of forcing intensityI in the 4:1 resonance re
gion. The range of forcing intensity is limited by aI depen-
dence of the reaction kinetics. AsI is increased, the reactio
kinetics shifts from oscillatory to excitable.

III. AN AMPLITUDE EQUATION FOR FORCED
OSCILLATORY SYSTEMS

We study the experimental observations shown in the p
ceding section using a normal form equation for the am
tude of thev f /4 mode. Consider first an oscillatory syste
responding to the forcing atv f /n where n is integer. We
assume the system is near the onset of oscillations, i.e., c
to a Hopf bifurcation. The set of dynamical fieldsu describ-
ing the spatio-temporal state of the system can be written

u5u0A exp~ iv f t/n!1c.c.1¯ , ~1!

whereu0 is constant,A is a slowly varying complex ampli-
tude, and the ellipses denote other resonances with sm
contributions. The slow space and time evolution of the a
plitude A is described by the forced complex Ginzbur
Landau equation@15,18,19#,

At5~m1 in!A1~11 ia!Azz2~12 ib!uAu2A1gnA* ~n21!,
~2!

rn
FIG. 2. A rotating four-phase spiral wave observed in the forc

BZ reaction.~a! A 5.435.4 mm2 region of a reactor image showin
a 4:1 resonant spiral pattern. The white, light gray, dark gray,
black domains represent the four phase states of the system.~b! A
plot of the complex Fourier amplitudea at v f /4 for each pixel of
the pattern. The forcing intensity isI 5426 W/m2 and the forcing
frequency isv f /2p50.062 Hz. The data were filtered to isolate th
response atv f /4 from the higher harmonics.

FIG. 3. A histogram showing the distribution of phase angles
the pattern in Fig. 2. The four peaks indicate the high density
points in each of the four phase states.
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3792 PRE 62A. L. LIN et al.
wherem is the distance from the Hopf bifurcation,n is the
detuning from the exact resonance, andgn is the forcing
amplitude.

For the special casen54 ~the 4:1 resonance! we can
eliminate the parameterm by rescaling time, space, and am
plitude ast5mt, x5Am/2z andB5AAm to obtain

Bt5~11 in0!B1 1
2 ~11 ia!Bxx2~12 ib!uBu2B1gB* 3,

~3!

wheren05n/m. Equation~3! also applies to the 4:3 subha
monic resonance. This follows from symmetry consid
ations: the system is symmetric to discrete time translati
t→t1(2p/v f)5t1(3p/2v). The amplitude equation mus
then be invariant under the transformationB
→B exp(3pi/2). The only forcing term satisfying this re
quirement to cubic order isB* 3.

A. Phase states and phase fronts

Constant solutions of Eq.~3! indicate that the system i
entrained to the forcing. There are four stable constant s
tions to Eq.~3!, each with the same amplitude but with di
ferent phases, arg(B), which correspond to the four stab
phase states. Simple expressions for these solutions an
act forms for the front solutions connecting them in space
obtained from the gradient version of Eq.~3!, wheren05a
5b50:

Bt5B1 1
2 Bxx2uBu2B1gB* 3. ~4!

The stable phase states~constant solutions! of Eq. ~4! for 0
,g,1 are (B1 ,B2 ,B3 ,B4)5(l,il,2l,2 il) where l
51/A12g. They are represented as solid circles in Fig.

Front solutions connecting pairs of these states are of
types, fronts between states separated in phase byp and
fronts between states separated in phase byp/2 ~hereafterp
fronts andp/2 fronts!. Thep-front solutions are

B3→15B1 tanhx,

FIG. 4. The four phase states~solid circles! connected by phase
fronts in the forced complex Ginzburg-Landau equation~4!. Two
types of fronts between phase states are possible; the solid line
p fronts and the dashed lines arep/2 fronts.
-
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u-
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re
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B4→25B2 tanhx. ~5!

For the particular parameter valueg51/3 thep/2 fronts have
the simple forms

B2→15 1
2A 3

2 @11 i 1~12 i !tanhx#,

B1→45 1
2A 3

2 @12 i 2~11 i !tanhx#,

~6!
B3→252B1→4 ,

B4→352B2→1 .

Additional front solutions follow from the invariance of Eq
~4! under reflection,x→2x.

Figure 4 shows these front solutions~parametrized by the
spatial coordinatex! in the complexB plane. For example
the p front B3→1 is represented by the solid line connectin
the stateB3 to the stateB1 asx increases from2` to 1`.
The p/2 front B2→1 is represented by the dashed line co
necting the stateB2 to the stateB1 .

In the special case of the gradient system~4! all front
solutions are stationary. The more general case with non
dient terms in Eq.~3! can be studied by perturbation theo
whenn0 , a, andb are small@19#. The results of this analysis
show that thep/2 fronts become propagating fronts while th
p fronts remain stationary.

Figure 5 shows a rotating four-phase spiral wave from
numerical solution of the two-dimensional version@22# of
Eq. ~3!. The phase diagram in the complexB plane, shown in
Fig. 5~b!, has fourp/2 fronts: B1→4 , B4→3 , B3→2 , and
B2→1 . The amplitudeB corresponds to the complex Fourie
amplitudea measured in the experiment; the four-phase s
ral pattern in Fig. 2 and the corresponding diamond shap
the complex plane are predicted by the amplitude equati

B. A phase-front instability

The existence of the stationaryp-front solutions suggests
that standing two-phase patterns similar to those found un
2:1 resonant conditions@2,16# may be observed in the 4:
resonant case provided thep fronts are stable. Standing two
phase patterns have not been observed in experiments i
4:1 resonance band so the stability ofp fronts becomes a
question. Stability conditions forp-front solutions were
studied in Refs.@18#, @19#. The results are described below

are

FIG. 5. A rotating four-phase spiral wave in the forced comp
Ginzburg-Landau equation.~a! arg(B(x,y)) in the x-y plane. ~b!
B(x,y) in the complex plane. Parameters:g50.6, n050.1, a5b
50.
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FIG. 6. ~a! The phase, arg(B) of a pair ofp/2 fronts,B3→2 andB2→1 . The distance between the two fronts is defined to be 2x. ~b! The
potentialV(x) describes the interaction between twop/2 fronts. Forg.gc the extremum atx50 is a minimum andx converges to 0. For
g,gc the extremum is a maximum andx diverges to6`. At g5gc the potential is flat and there is no interaction betweenp/2 fronts.
es

e

ce

o

n
f

o

s
l-

lu

u

f
g.
e

e

terns
ed

t

la-

o
s

ce

an
t

Consider the pair ofp/2 fronts shown in Fig. 6~a!. They
are separated by a distance 2x and connect the phase stat
B3 and B1 @23#. For g'1/3, the solutions~6! are good ap-
proximations top/2-front solutions. The pair of fronts can b
represented as

B~x;z,x!'B3→2~x2z1x!1B2→1~x2z2x!2 il, ~7!

wherez is their mean position. For large separation distan
(x@1) B'B3→2 when x'z2x and B'B2→1 when x'z
1x, and Eq.~7! represents a pair of isolatedp/2 fronts.
When the distance between the pair decreases to zerx
→0), thenB'B3→1 and Eq.~7! approaches ap-front solu-
tion.

The stability ofp fronts is determined by the interactio
between a pair ofp/2 fronts. Stablep fronts are the result o
an attractivep/2 front interaction; thep/2 fronts attract each
other and the distance between them decreases to zer
repulsive interaction implies unstablep fronts. The potential
V(x) that governs this interaction@18,19#,

ẋ52
dV

dx
, ~8!

is shown in Fig. 6~b! for variousg values. The potential ha
a single maximum forg,gc51/3 which represents a repu
sive interaction betweenp/2 fronts and the instability ofp
fronts. It has a single minimum forg.gc which indicates
the attractive interaction betweenp/2 fronts and the resulting
stability of p fronts. At gc the potential is flat,V50, for all
x values. At this parameter value, pairs ofp/2 fronts do not
interact and there is a continuous family of front pair so
tions with arbitrary separation distances, 2x, in Eq. ~7!. This
degeneracy of solutions at the critical pointg5gc is re-
moved by adding higher order terms to the amplitude eq
tion, as we discuss in Sec. III D.

To summarize, stationaryp-front solutions of Eq.~3! are
stable for forcing amplitudesg.gc51/3. Wheng is de-
creased pastgc , p fronts lose stability and split into pairs o
propagatingp/2 fronts. The splitting process is shown in Fi
7 where theB3→1 p front evolves into the pair of stabl
travelingp/2 fronts,B3→2 andB2→1 wheng,gc . The par-
ity symmetryx→2x makes evolution toward the pairB1→4
and B4→3 equally likely. The splitting occurs for forcing
amplitudes arbitrarily close togc , although in that case th
time scale of this process becomes very long.
s

(

. A

-

a-

C. Effects of the phase-front instability on pattern formation

The stability of stationaryp fronts forg.gc suggests the
predominance of standing two-phase patterns. These pat
involve alternating domains with oscillation phases shift
by p with respect to one another. Domains shifted byp/2
may exist as transients; the interactions betweenp fronts and
p/2 fronts always producep/2 fronts which are stable bu
attract one another and coincide to form stationaryp fronts.
Since thep/2 fronts are traveling these transients are re
tively short. For g,gc the interactions between thep/2
fronts are repulsive. Thep fronts are unstable and split int
pairs of travelingp/2 fronts. As a result, traveling wave
with all four phase states are the asymptotic pattern.

FIG. 7. An example of the phase-front instability in one spa
dimension. Left: The space-time plot@solutions of Eq.~3!# shows
the splitting of an unstablep front into a pair of travelingp/2
fronts. Thep/2 front pairs enclose the dark grey domain that has
oscillation phase shifted byp/2 with respect to the black and ligh
gray domains. Right: Snapshots at timest50, t5100, and t
5300, showing the instability in the complexB plane. Parameters
in Eq. ~3!: n050.02,g50.3, a5b50.
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3794 PRE 62A. L. LIN et al.
A typical two-dimensional traveling pattern involving a
four phases is the four-phase spiral wave shown in Fig. 2
in Fig. 5. Figure 8 shows the effect of the phase-front ins
bility on a four-phase spiral wave. The initial spiral wav
@Fig. 8~a!# was obtained by solving a two-dimensional ve
sion of Eq.~3! for g,gc . The following three frames@Figs.
8~b!–8~d!# are snapshots showing the evolution of the init
four-phase spiral wave into a standing two-phase pattern
ter g is increased abovegc . The evolution begins at the
spiral core where the attractive interactions between pair
p/2 fronts are the strongest. The coalescence ofp/2 fronts
leaves behind a stationaryp front which grows in length
until no p/2 fronts are left, as is evident by the single line
the complexB plane shown in Fig. 8~d!.

D. Higher order terms in the amplitude equation

From the analysis of Eq.~3! we have shown that two
phase patterns must be standing and four-phase patterns
be traveling. The analysis of the equation with higher or

FIG. 8. Numerical solution of a two-dimensional version of E
~3! showing the evolution of a rotating four-phase spiral wave i
a standing two-phase pattern wheng is increased abovegc . The
frames on the left show arg(B) in the x-y plane. The frames on the
right show the complexB plane. ~a! The initial four-phase spira
wave separated byp/2 fronts computed withg,gc . ~b! Wheng is
increased abovegc two pairs of p/2 fronts begin to attract one
another.~c! As thep/2 fronts attract they collapse into a stationa
p front which grows in length.~d! The final standing two-phas
pattern. Parameters:g50.6, n050.1, a5b50, gc'1/3.
d
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l
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of
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contributions suggests the possible existence of a smag
range, of orderm!1, surroundinggc where slowly traveling
two-phase patterns exist.

The higher order contributions to Eq.~3!, such asuBu4B
or uBu2Bxx , lift the degeneracy of the instability. Figure
shows two possible scenarios for the front interaction pot
tial V when higher order contributions to Eq.~3! are included
~both scenarios lift the degeneracy of the phase-front in
bility !. In one case, shown in Fig. 9~a!, the stationaryp front
loses stability to a pair of counter-propagatingp fronts in a
pitchfork bifurcation which leads to double-minimum pote
tial. This scenario is a nonequilibrium Ising–Bloch pitchfo
bifurcation of p fronts like the one found in the 2:1 reso
nance case@24# and in other bistable systems@13,25–27#. It
leads to slow traveling two-phase patterns in the range wh
gis neargc . In the scenario shown in Fig. 9~b!, the station-
ary p front loses stability via a subcritical bifurcation whic
leads to double-maximum potential. In this case there i
range of stablep fronts coexisting with pairs of separate
p/2 fronts. This allows the possibility of patterns containin
bothp fronts andp/2 fronts. Beyond this range the potenti
has a single maximum andp fronts split into pairs ofp/2
fronts. Both scenarios persist over a range ofg of order m,
the distance from the Hopf bifurcation.

IV. NUMERICAL SOLUTIONS OF PERIODICALLY
FORCED REACTION-DIFFUSION MODELS

The amplitude equation analysis predicts the existenc
a phase-front instability near the Hopf bifurcation and hin
at possible modifications of the instability as the distan

FIG. 9. The degeneracy of the potentialV(x) atg5gc is broken
by adding higher order terms to~3!. In the intermediate range o
g'gc two scenarios are possible asg is decreased through th
bifurcation.~a! The x50 solution loses stability in a pitchfork bi
furcation atgc to a pair of solutions that move to6`. ~b! The x
50 solution remains stable while thex56` solutions acquire
stability and lose stability only belowgc . In both cases the defor
mations from a single minimum to a single maximum occur with
a small range ofg of orderm!1.
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PRE 62 3795FOUR-PHASE PATTERNS IN FORCED OSCILLATORY SYSTEMS
from the Hopf bifurcation is increased. Our objectives in th
section are to test the existence of the instability in reactio
diffusion models and to use the models to examine how
instability is modified far from the Hopf bifurcation.

A. The FitzHugh-Nagumo model

We study a periodically forced version of the FitzHug
Nagumo equations

ut5u2~11G cosv f t !u
32v1“

2u,
~9!

v t5e~u2a1v !1d“2v.

The unforced model is obtained by settingG50. The uni-
form state (u,v)5(0,0) undergoes a Hopf bifurcation ase is
decreased pastec51/a1 . The Hopf frequency isvH

5Aec21 and the distance from the Hopf bifurcation is me
sured bym5(ec2e)/ec .

We compute the numerical solutions of Eq.~9! in the 4:1
resonance band (v f'4vH) and close to the Hopf bifurcation
(m!1). Close to the Hopf bifurcation the amplitude equ
tion analysis applies. We expect to find a critical value of
forcing amplitudeGc corresponding to the phase-front inst
bility point gc in the amplitude equation. For the FitzHug
Nagumo equations thisGc will, in general, depend on the
parameterse, d, a1 , and v f . In the following we fix a1
51/2, d50, v f54 and only varye ~the parameter that con
trols the distancem to the Hopf bifurcation! and the forcing
amplitudeG.

Close to the Hopf bifurcation we find stable stationaryp
fronts for forcing amplitudesG.Gc . Below Gc , stationary
p fronts are unstable and split into pairs ofp/2 fronts. Figure
10 illustrates this in a numerical solution of a on
dimensional version of Eq.~9!. A stablep-front pattern is
generated from random initial conditions withG.Gc . At t
50 G is decreased belowGc ; the p front becomes unstabl
and splits into a pair of travelingp/2 fronts.

The numerically computedGc for the solution in Fig. 10
is Gc'2.15. SinceGc is a function of the parameters in Eq
~9!, we define a new parameterh5(Gc2G)/Gc that mea-
sures the distance from the phase-front instability point.
Fig. 10, h'0.012 indicating that we are just beyond th
critical point.

Farther from the Hopf bifurcation we find that the phas
front instability still exists. Figure 11 shows the the evoluti
of an initial unstable stationaryp front with parameters cho
sen so the system is far from the Hopf bifurcation but at
same distance,h'0.012, from the phase-front instability
The asymptotic solution is a slowly propagatingp front, in
contrast to a pair of separatedp/2 fronts that develop close t
the Hopf bifurcation~see Fig. 10!. The range of forcing am-
plitudes nearGc over which these travelingp fronts exist
increases withm. At smaller forcing amplitudes, below th
range of travelingp fronts, p fronts split into pairs ofp/2
fronts and four phase traveling patterns prevail.

In two dimensions the typical traveling wave pattern f
G,Gc is a rotating four-phase spiral wave. Figure 12~a!
shows a stable four-phase spiral wave generated from
dom initial conditions. Using this spiral as an initial cond
tion, we increaseG aboveGc and the system evolves into
two-phase standing pattern. Figures 12~b!–12~d! show the
–
e

-

-
e

n

-

e

n-

transition. Since thep/2 fronts are attracting the spiral i
unstable and two of the four phase domains shrink unt
standing two-phase pattern remains.

The numerical solutions of the forced FitzHugh-Nagum
equations support the predictions of the amplitude equa
analysis. Close to the Hopf bifurcation, the phase-front ins
bility is found ~compare Fig. 7 with Fig. 10 and Fig. 8 wit
Fig. 12!. Far from the Hopf bifurcation the instability per
sists. The effects of higher order terms in the amplitu
equation are valid even far from the Hopf bifurcation (m
50.25); the phase-front instability near the Hopf bifurcati
~as m→0! turns into an Ising-Bloch pitchfork bifurcation
Stationaryp fronts bifurcate to travelingp fronts and not
p/2 fronts.

B. The Brusselator model

We tested the transition from four-phase traveling wav
to two-phase standing waves using another reactio
diffusion model, the forced Brusselator,

ut5c2du1@11G cosv f t#u
2v1“

2u,
~10!

v t5du2u2v1d“2v.

FIG. 10. The phase-front instability in the 4:1 resonance of
forced FitzHugh-Nagumo model@Eq. ~9!# close to the Hopf bifur-
cation. Left: a space-time plot of arg(a) where a is the complex
Fourier coefficient of the 4:1 response@equivalent toA in Eq. ~2!#.
At t50 the forcing amplitude was decreased belowGc . The initial
standingp front becomes unstable and splits into a pair of travel
p/2 fronts. Thep/2 fronts separate the black, dark gray, and lig
gray domains where the oscillation phase is shifted successivel
p/2. Right: The same data depicted in the complexa plane at three
successive times,t50, t5560Tf , and t54160Tf , where Tf

52p/v f . ~a! The initial standingp front is unstable.~b! The front
develops an intermediate phase.~c! Two p/2 fronts are formed.
Parameters:a150.5, e51.95, d50, G52.0, v f54.0, and m
50.025. The phase-front instability point isGc'2.15 and h
'0.012.
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The unforced Brusselator, obtained by settingG50, has a
stationary uniform state (u,v)5(c,d/c) which undergoes a
Hopf bifurcation asd is increased pastdc511c2. The Hopf
frequency isvH5c and the distance from the Hopf bifurca
tion is measured bym5(d2dc)/dc .

We studied Eq.~10! in the 4:1 resonance band using
numerical partial differential equation solver@28,29#. We
found that below a critical forcing amplitudeGc the solutions
are rotating four-phase spiral waves consisting ofp/2 fronts
@see Fig. 13~a!#. The four-phase spiral wave was genera
by one of two following initial conditions: a spiral wav
computed from the unforced (G50) Brusselator equations
or the linear functions

u~x,y!5y/L, 0<y<L,

v~x,y!522x/L140<x<L,

whereL5632.5.
Above Gc pairs of p/2 fronts attract each other and th

core of the spiral evolves into an expandingp front. Figures
13~b!–13~d! illustrate this process. When thep/2 fronts dis-
appear, the resulting asymptotic pattern is two states s
rated by a stationaryp front. The transition from a four-
phase spiral wave to a two-phase stationary pattern, as in

FIG. 11. The phase-front instability in the 4:1 resonance of
forced FitzHugh-Nagumo model@Eq. ~9!# far from the Hopf bifur-
cation. Left: a space–time plot of arg(a). At t50 the forcing am-
plitude was decreased belowGc . The initial standingp front is
unstable and starts traveling to the right. In this case, no interm
ate phase develops. Right: The same data depicted in the compa
plane at three successive times,t50, t53000Tf , and t56000Tf ,
whereTf52p/v f . ~a! The initial standingp front. ~b! The stand-
ing p front is unstable and begins to travel.~c! The asymptotic
pattern is a travelingp front. Parameters:a150.5, e51.5, d50,
G51.585,v f54.0, andm50.25. The phase-front instability poin
is Gc'1.605 andh'0.012.
d

a-

he

amplitude equation model and the FitzHugh-Nagumo mod
indicates the existence of the phase-front instability in
Brusslator model.

V. CONCLUSIONS

We studied 4:1 resonant patterns in Belouso
Zhabotinsky chemical experiments, in an amplitude equa
for forced oscillatory systems~the forced complex Ginzburg
Landau equation!, and in forced FitzHugh-Nagumo an
Brusselator reaction-diffusion models. At low forcing amp
tudes all of these systems exhibit traveling four-phase p
terns.

An analysis of a forced complex Ginzburg–Landau eq
tion, derivable from periodically forced reaction–diffusio
systems near a Hopf bifurcation, predicts traveling fo
phase patterns at low forcing amplitude and standing tw
phase patterns at high forcing amplitude. The transit
mechanism between these two patterns is a degene

e

i-
x

FIG. 12. Numerical solution of the forced FitzHugh–Nagum
equations~9! in 4:1 resonance shown at four successive timet
50, t511 600Tf , t513 600Tf , and t515 600Tf where Tf

52p/v f . The frames on the left show arg(a) in thex-y plane. The
frames on the right show the complexa plane.~a! The initial spiral
wave of four phases separated byp/2 fronts is computed withG
,Gc . ~b! When G is increased aboveGc two pairs ofp/2 fronts
begin to attract one another.~c! As thep/2 fronts attract they col-
lapse into a stationaryp front which grows in length.~d! The final
pattern is two phase domains separated by a stationaryp front.
Parameters:a150.5, e51.5, d50, G52.5, andv f54.0.
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phase-front instability where a stationaryp front splits into a
pair of travelingp/2 fronts. We derived an interaction pote
tial betweenp/2 fronts that describes the instability as
change from repulsive to attractivep/2-front interactions.
We investigated the behavior of the instability near the cr

FIG. 13. Numerical solutions of the forced Brusselator mo
~10! showing snapshots att50, t5748Tf , t51000Tf , and t
55544Tf whereTf52p/v f . The rotating four-phase spiral wave
computed withG,Gc (G50.11), transforms into a standing two
phase pattern afterG is increased pastGc (G50.13). The frames in
the left-hand column show arg(a) in the x–y plane wherea is the
complex Fourier coefficient of the 4:1 mode. The right-hand c
umn shows the same data in the complexa plane. Parameters:c
50.5,d51.5,d55.0,v f51.69, andm50.20. The numerical solu
tion grid was 1283128 points.
ett
-

cal point where higher order terms in the amplitude equat
become important. We found that these terms lift the deg
eracy of the instability and introduce a narrow intermedi
regime. In this regime we found both slowly travelingp
fronts and the coexistence of stable stationaryp fronts and
repelling pairs ofp/2 fronts.

We further investigated this phase-front instability usi
the FitzHugh-Nagumo and the Brusselator reactio
diffusion models. These models exhibit the instability ev
far from the Hopf bifurcation where the amplitude equati
is not known to be valid. Near the Hopf bifurcation the i
stability, atGc , separates patterns of stationaryp fronts from
patterns of travelingp/2 fronts. In two dimensions, a rotatin
four-phase spiral wave evolves into a two-phase stand
pattern whenG is increased pastGc . In the FitzHugh-
Nagumo model we found, far from the Hopf bifurcation, a
intermediate range nearGc where travelingp front patterns
were observed. These numerical results are in full agreem
with the theoretical predictions based on the amplitude eq
tion.

The standing two-phase patterns found in the amplitu
equation and in the FitzHugh-Nagumo and Brusselator m
els were not observed in the experiments, which were c
ducted far from the Hopf bifurcation. However, the existen
of the phase-front instability far from the Hopf bifurcatio
was found in the numerical studies of the FitzHugh-Nagu
and Brusselator models. We conclude that the large dista
from the Hopf bifurcation does not explain the absence
standing two-phase patterns in the experiments. A m
likely explanation is the limited dynamic range of the forcin
amplitude in the experiments. Experiments show that the
namics of the BZ reaction areg dependent; as the forcin
amplitude is increased, the dynamics undergo a transi
from oscillatory to excitable kinetics. The excitable kineti
are not described by the amplitude equation or by
reaction-diffusion models in the parameter ranges we s
ied.
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