2,036 research outputs found
Environmental boundary tracking and estimation using multiple autonomous vehicles
In this paper, we develop a framework for environmental
boundary tracking and estimation by considering the
boundary as a hidden Markov model (HMM) with separated
observations collected from multiple sensing vehicles. For each
vehicle, a tracking algorithm is developed based on Page’s
cumulative sum algorithm (CUSUM), a method for change-point
detection, so that individual vehicles can autonomously
track the boundary in a density field with measurement noise.
Based on the data collected from sensing vehicles and prior
knowledge of the dynamic model of boundary evolvement, we
estimate the boundary by solving an optimization problem, in
which prediction and current observation are considered in the
cost function. Examples and simulation results are presented
to verify the efficiency of this approach
Reverse undercompressive shock structures in driven thin film flow
We show experimental evidence of a new structure involving an
undercompressive and reverse undercompressive shock for draining films driven
by a surface tension gradient against gravity. The reverse undercompressive
shock is unstable to transverse perturbations while the leading
undercompressive shock is stable. Depending on the pinch-off film thickness, as
controlled by the meniscus, either a trailing rarefaction wave or a compressive
shock separates from the reverse undercompressive shock
Characterization of radially symmetric finite time blowup in multidimensional aggregation equations,
This paper studies the transport of a mass in by a
flow field . We focus on kernels for
for which the smooth densities are known to develop
singularities in finite time. For this range This paper studies the transport
of a mass in by a flow field . We
focus on kernels for for which the
smooth densities are known to develop singularities in finite time. For this
range we prove the existence for all time of radially symmetric measure
solutions that are monotone decreasing as a function of the radius, thus
allowing for continuation of the solution past the blowup time. The monotone
constraint on the data is consistent with the typical blowup profiles observed
in recent numerical studies of these singularities. We prove monotonicity is
preserved for all time, even after blowup, in contrast to the case
where radially symmetric solutions are known to lose monotonicity. In the case
of the Newtonian potential (), under the assumption of radial
symmetry the equation can be transformed into the inviscid Burgers equation on
a half line. This enables us to prove preservation of monotonicity using the
classical theory of conservation laws. In the case and at
the critical exponent we exhibit initial data in for which the
solution immediately develops a Dirac mass singularity. This extends recent
work on the local ill-posedness of solutions at the critical exponent.Comment: 30 page
A Model for Optimal Human Navigation with Stochastic Effects
We present a method for optimal path planning of human walking paths in
mountainous terrain, using a control theoretic formulation and a
Hamilton-Jacobi-Bellman equation. Previous models for human navigation were
entirely deterministic, assuming perfect knowledge of the ambient elevation
data and human walking velocity as a function of local slope of the terrain.
Our model includes a stochastic component which can account for uncertainty in
the problem, and thus includes a Hamilton-Jacobi-Bellman equation with
viscosity. We discuss the model in the presence and absence of stochastic
effects, and suggest numerical methods for simulating the model. We discuss two
different notions of an optimal path when there is uncertainty in the problem.
Finally, we compare the optimal paths suggested by the model at different
levels of uncertainty, and observe that as the size of the uncertainty tends to
zero (and thus the viscosity in the equation tends to zero), the optimal path
tends toward the deterministic optimal path
Simplified Energy Landscape for Modularity Using Total Variation
Networks capture pairwise interactions between entities and are frequently
used in applications such as social networks, food networks, and protein
interaction networks, to name a few. Communities, cohesive groups of nodes,
often form in these applications, and identifying them gives insight into the
overall organization of the network. One common quality function used to
identify community structure is modularity. In Hu et al. [SIAM J. App. Math.,
73(6), 2013], it was shown that modularity optimization is equivalent to
minimizing a particular nonconvex total variation (TV) based functional over a
discrete domain. They solve this problem, assuming the number of communities is
known, using a Merriman, Bence, Osher (MBO) scheme.
We show that modularity optimization is equivalent to minimizing a convex
TV-based functional over a discrete domain, again, assuming the number of
communities is known. Furthermore, we show that modularity has no convex
relaxation satisfying certain natural conditions. We therefore, find a
manageable non-convex approximation using a Ginzburg Landau functional, which
provably converges to the correct energy in the limit of a certain parameter.
We then derive an MBO algorithm with fewer hand-tuned parameters than in Hu et
al. and which is 7 times faster at solving the associated diffusion equation
due to the fact that the underlying discretization is unconditionally stable.
Our numerical tests include a hyperspectral video whose associated graph has
2.9x10^7 edges, which is roughly 37 times larger than was handled in the paper
of Hu et al.Comment: 25 pages, 3 figures, 3 tables, submitted to SIAM J. App. Mat
- …