119 research outputs found

    Zinc and ageing: third Zincage conference

    Get PDF
    The importance of Zn for optimal functioning of the immune system and antioxidant stress response is well documented. Zn homeostasis influences development and function of immune cells, activity of stress-related and antioxidant proteins [metallothioneins (MT), chaperones, ApoJ, Poly(ADP-Ribose) polymerase-1 (PARP-1) and Methionione Sulfoxide Reductase (Msr), Superoxide Dismutase (SOD)], and helps to maintain genomic integrity and stability. During ageing, the intake of Zn decreases due to inadequate diet and/or intestinal malabsorption, contributing to frailty, general disability and increased incidence of age-related degenerative diseases (cancer, infections and atherosclerosis). Although many factors contributing to Zn deficiency have been identified, the biochemical markers of Zn deficiency as well as the possibility to achieve relevant health benefits through Zn supplementation in the elderly are still a matter for evaluation. Taking into account that Zn homeostasis is regulated by proteins and enzymes for which polymorphisms have been previously found to be associated with successful/unsuccessful ageing, genetic screening might be of added value in evaluating the individual response to Zn supplementation. Biochemical, immunological, dietary and genetic studies aimed at understanding the impact of Zn in healthy ageing, the effect of Zn supplementation in the elderly and finally formulating a rationale for the promotion of correct Zn supplementation were discussed at the international Zincage conference held in Ancona in January 2007

    Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture

    Get PDF
    Abstract Background Neurons are highly polarized cells consisting of three distinct functional domains: the cell body (and associated dendrites), the axon and the synapse. Previously, it was believed that the clinical phenotypes of neurodegenerative diseases were caused by the loss of entire neurons, however it has recently become apparent that these neuronal sub-compartments can degenerate independently, with synapses being particularly vulnerable to a broad range of stimuli. Whilst the properties governing the differential degenerative mechanisms remain unknown, mitochondria consistently appear in the literature, suggesting these somewhat promiscuous organelles may play a role in affecting synaptic stability. Synaptic and non-synaptic mitochondrial subpools are known to have different enzymatic properties (first demonstrated by Lai et al., 1977). However, the molecular basis underpinning these alterations, and their effects on morphology, has not been well documented. Methods The current study has employed electron microscopy, label-free proteomics and in silico analyses to characterize the morphological and biochemical properties of discrete sub-populations of mitochondria. The physiological relevance of these findings was confirmed in-vivo using a molecular genetic approach at the Drosophila neuromuscular junction. Results Here, we demonstrate that mitochondria at the synaptic terminal are indeed morphologically different to non-synaptic mitochondria, in both rodents and human patients. Furthermore, generation of proteomic profiles reveals distinct molecular fingerprints – highlighting that the properties of complex I may represent an important specialisation of synaptic mitochondria. Evidence also suggests that at least 30% of the mitochondrial enzymatic activity differences previously reported can be accounted for by protein abundance. Finally, we demonstrate that the molecular differences between discrete mitochondrial sub-populations are capable of selectively influencing synaptic morphology in-vivo. We offer several novel mitochondrial candidates that have the propensity to significantly alter the synaptic architecture in-vivo. Conclusions Our study demonstrates discrete proteomic profiles exist dependent upon mitochondrial subcellular localization and selective alteration of intrinsic mitochondrial proteins alters synaptic morphology in-vivo

    Increased hippocampal CA1 density of serotonergic terminals in a triple transgenic mouse model of Alzheimer's disease: an ultrastructural study

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative pathology that deteriorates mnesic functions and associated brain regions including the hippocampus. Serotonin (5-HT) has an important role in cognition. We recently demonstrated an increase in 5-HT transporter (SERT) fibre density in the hippocampal CA1 in an AD triple transgenic mouse model (3xTg-AD). Here, we analyse the ultrastructural localisation, distribution and numerical density (Nv) of hippocampal SERT axons (SERT-Ax) and terminals (SERT-Te) and their relationship with SERT fibre sprouting and altered synaptic Nv in 3xTg-AD compared with non-transgenic control mice. 3xTg-AD animals showed a significant increase in SERT-Te Nv in CA1 at both, 3 (95%) and 18 months of age (144%), being restricted to the CA1 stratum moleculare (S. Mol; 227% at 3 and 180% at 18 months). 3xTg-AD animals also exhibit reduced Nv of perforated axospinous synapses (PS) in CA1 S. Mol (56% at 3 and 52% at 18 months). No changes were observed in the Nv of symmetric and asymmetrical synapses or SERT-Ax. Our results suggest that concomitant SERT-Te Nv increase and PS reduction in 3xTg-AD mice may act as a compensatory mechanism maintaining synaptic efficacy as a response to the AD cognitive impairment

    Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus

    Get PDF
    Dystrophic neurites associated with amyloid plaques precede neuronal death and manifest early in Alzheimer’s disease (AD). In this work we have characterized the plaque-associated neuritic pathology in the hippocampus of young (4- to 6-month-old) PS1M146L/APP751SL mice model, as the initial degenerative process underlying functional disturbance prior to neuronal loss. Neuritic plaques accounted for almost all fibrillar deposits and an axonal origin of the dystrophies was demonstrated. The early induction of autophagy pathology was evidenced by increased protein levels of the autophagosome marker LC3 that was localized in the axonal dystrophies, and by electron microscopic identification of numerous autophagic vesicles filling and causing the axonal swellings. Early neuritic cytoskeletal defects determined by the presence of phosphorylated tau (AT8-positive) and actin–cofilin rods along with decreased levels of kinesin-1 and dynein motor proteins could be responsible for this extensive vesicle accumulation within dystrophic neurites. Although microsomal Aβ oligomers were identified, the presence of A11-immunopositive Aβ plaques also suggested a direct role of plaque-associated Aβ oligomers in defective axonal transport and disease progression. Most importantly, presynaptic terminals morphologically disrupted by abnormal autophagic vesicle buildup were identified ultrastructurally and further supported by synaptosome isolation. Finally, these early abnormalities in axonal and presynaptic structures might represent the morphological substrate of hippocampal dysfunction preceding synaptic and neuronal loss and could significantly contribute to AD pathology in the preclinical stages

    Imaging the boundaries—innovative tools for microscopy of living cells and real-time imaging

    Get PDF
    Recently, light microscopy moved back into the spotlight, which is mainly due to the development of revolutionary technologies for imaging real-time events in living cells. It is truly fascinating to see enzymes “at work” and optically acquired images certainly help us to understand biological processes better than any abstract measurements. This review aims to point out elegant examples of recent cell-biological imaging applications that have been developed with a chemical approach. The discussed technologies include nanoscale fluorescence microscopy, imaging of model membranes, automated high-throughput microscopy control and analysis, and fluorescent probes with a special focus on visualizing enzyme activity, free radicals, and protein–protein interaction designed for use in living cells

    Early and Late Pathomechanisms in Alzheimer’s Disease: From Zinc to Amyloid-β Neurotoxicity

    Get PDF

    Increased intracellular ionic content is correlated with a decreased perichromatin granule density in old neurones

    No full text
    corecore