1,583 research outputs found

    Whitham Deformations of Seiberg-Witten Curves for Classical Gauge Groups

    Get PDF
    Gorsky et al. presented an explicit construction of Whitham deformations of the Seiberg-Witten curve for the SU(N+1)SU(N+1) \calN = 2 SUSY Yang-Mills theory. We extend their result to all classical gauge groups and some other cases such as the spectral curve of the A2N(2)A^{(2)}_{2N} affine Toda Toda system. Our construction, too, uses fractional powers of the superpotential W(x)W(x) that characterizes the curve. We also consider the uu-plane integral of topologically twisted theories on four-dimensional manifolds XX with b2+(X)=1b_2^{+}(X) = 1 in the language of these explicitly constructed Whitham deformations and an integrable hierarchy of the KdV type hidden behind.Comment: latex, 39pp, no figure; some more comments and references on integrable systems are added, and many typos are correcte

    Noncommutative Riemann Surfaces

    Get PDF
    We compactify M(atrix) theory on Riemann surfaces Sigma with genus g>1. Following [1], we construct a projective unitary representation of pi_1(Sigma) realized on L^2(H), with H the upper half-plane. As a first step we introduce a suitably gauged sl_2(R) algebra. Then a uniquely determined gauge connection provides the central extension which is a 2-cocycle of the 2nd Hochschild cohomology group. Our construction is the double-scaling limit N\to\infty, k\to-\infty of the representation considered in the Narasimhan-Seshadri theorem, which represents the higher-genus analog of 't Hooft's clock and shift matrices of QCD. The concept of a noncommutative Riemann surface Sigma_\theta is introduced as a certain C^\star-algebra. Finally we investigate the Morita equivalence.Comment: LaTeX, 1+14 pages. Contribution to the TMR meeting ``Quantum aspects of gauge theories, supersymmetry and unification'', Paris 1-7 September 199

    A strength and serviceability assessment of high performance steel Bridge 10462

    Get PDF
    High performance steels (HPS) were developed through the cooperative efforts of the American Iron and Steel Institute (AISI), the US Navy, and the Federal Highway Administration (FHWA). They offer several advantages over conventional bridge steels including greater yield strengths, improved ductility, increased toughness, and better welding characteristics. The three grades of HPS that are currently available in today\u27s bridge market are HPS 50W, 70W, and 100W. The current steel I-girder flexural capacity equations, however, were specifically developed for girders with nominal yield strengths less than or equal to 70 ksi. Because of this fact, the flexural capacities of I-girders incorporating HPS 100W have been restricted due to a lack of experimental and/or analytical evidence that supports the applicability of existing equations. In particular, the design flexural capacities of compact and noncompact sections in negative flexure are currently limited to their yield moment capacities (My) instead of their plastic moment capacities (Mp).;The focus of this research project was to experimentally and analytically evaluate the applicability of the current design specifications for I-girders fabricated with HPS 100W. In particular, the strength and serviceability of the Culloden Railroad Overpass (WVDOH Bridge No. 10462) was assessed by conducting static and dynamic load tests. The Culloden Bridge is a three-span-continuous bridge that utilizes HPS 100W in the compression flanges of sections in negative flexure at interior supports. The experimental natural frequency, lateral live load distribution factors, and live load ratings were calculated from field test data and compared with values obtained from an independent design assessment.;The results indicate that the Culloden Bridge performs with adequate strength and serviceability under the current 4th edition of the American Association of Safety and Highway Transportation Officials (AASHTO) specifications (2007 with 2008 interims). The live load deflections obtained from static load tests were found to be less than L/1000, as well as those determined analytically. Experimental live load deflection distribution factors were found to be larger than AASHTO factors. Conversely, experimental moment distribution factors were found to be less than AASHTO factors. Experimental and design live load ratings were calculated based on the HL-93 design vehicular live load. In all cases, the experimental and design live load rating factors were found to be greater than 1.0; which indicates that the Culloden Bridge has sufficient capacity

    Thermodynamics of black branes in asymptotically Lifshitz spacetimes

    Full text link
    Recently, a class of gravitational backgrounds in 3+1 dimensions have been proposed as holographic duals to a Lifshitz theory describing critical phenomena in 2+1 dimensions with critical exponent z≥1z\geq 1. We continue our earlier work \cite{Bertoldi:2009vn}, exploring the thermodynamic properties of the "black brane" solutions with horizon topology R2\mathbb{R}^2. We find that the black branes satisfy the relation E=22+zTs\mathcal{E}=\frac{2}{2+z}Ts where E\mathcal{E} is the energy density, TT is the temperature, and ss is the entropy density. This matches the expected behavior for a 2+1 dimensional theory with a scaling symmetry (x1,x2)→λ(x1,x2)(x_1,x_2)\to \lambda (x_1,x_2), t→λztt\to \lambda^z t.Comment: 8 pages, references added and regroupe

    Determination of the Newtonian Gravitational Constant Using Atom Interferometry

    Full text link
    We present a new measurement of the Newtonian gravitational constant G based on cold atom interferometry. Freely falling samples of laser-cooled rubidium atoms are used in a gravity gradiometer to probe the field generated by nearby source masses. In addition to its potential sensitivity, this method is intriguing as gravity is explored by a quantum system. We report a value of G=6.667 10^{-11} m^{3} kg^{-1} s^{-2}, estimating a statistical uncertainty of ±\pm 0.011 10^{-11} m^{3} kg^{-1} s^{-2} and a systematic uncertainty of ±\pm 0.003 10^{-11} m^{3} kg^{-1} s^{-2}. The long-term stability of the instrument and the signal-to-noise ratio demonstrated here open interesting perspectives for pushing the measurement accuracy below the 100 ppm level.Comment: 4 figure

    Large N gauge theories and topological cigars

    Get PDF
    We analyze the conjectured duality between a class of double-scaling limits of a one-matrix model and the topological twist of non-critical superstring backgrounds that contain the N=2 Kazama-Suzuki SL(2)/U(1) supercoset model. The untwisted backgrounds are holographically dual to double-scaled Little String Theories in four dimensions and to the large N double-scaling limit of certain supersymmetric gauge theories. The matrix model in question is the auxiliary Dijkgraaf-Vafa matrix model that encodes the F-terms of the above supersymmetric gauge theories. We evaluate matrix model loop correlators with the goal of extracting information on the spectrum of operators in the dual non-critical bosonic string. The twisted coset at level one, the topological cigar, is known to be equivalent to the c=1 non-critical string at self-dual radius and to the topological theory on a deformed conifold. The spectrum and wavefunctions of the operators that can be deduced from the matrix model double-scaling limit are consistent with these expectations.Comment: 34 page

    Near-Infrared Photometry of the High-Redshift Quasar RDJ030117+002025: Evidence for a Massive Starburst at z=5.5

    Full text link
    With a redshift of z=5.5 and an optical blue magnitude M_B ~ -24.2 mag (~4.5 10^12 L_sun), RDJ030117+002025 is the most distant optically faint (M_B > -26 mag) quasar known. MAMBO continuum observations at lambda=1.2 mm (185 micrometer rest-frame) showed that this quasar has a far-IR luminosity comparable to its optical luminosity. We present near-infrared J- and K-band photometry obtained with NIRC on the Keck I telescope, tracing the slope of the rest frame UV spectrum of this quasar. The observed spectral index is close to the value of alpha_nu ~ -0.44 measured in composite spectra of optically-bright SDSS quasars. It thus appears that the quasar does not suffer from strong dust extinction, which further implies that its low rest-frame UV luminosity is due to an intrinsically-faint AGN. The FIR to optical luminosity ratio is then much larger than that observed for the more luminous quasars, supporting the suggestion that the FIR emission is not powered by the AGN but by a massive starburst.Comment: 6 pages, APJ in pres

    Thermodynamics of Dyonic Lifshitz Black Holes

    Full text link
    Black holes with asymptotic anisotropic scaling are conjectured to be gravity duals of condensed matter system close to quantum critical points with non-trivial dynamical exponent z at finite temperature. A holographic renormalization procedure is presented that allows thermodynamic potentials to be defined for objects with both electric and magnetic charge in such a way that standard thermodynamic relations hold. Black holes in asymptotic Lifshitz spacetimes can exhibit paramagnetic behavior at low temperature limit for certain values of the critical exponent z, whereas the behavior of AdS black holes is always diamagnetic.Comment: 26 pages, 4 figure
    • …
    corecore