We compactify M(atrix) theory on Riemann surfaces Sigma with genus g>1.
Following [1], we construct a projective unitary representation of pi_1(Sigma)
realized on L^2(H), with H the upper half-plane. As a first step we introduce a
suitably gauged sl_2(R) algebra. Then a uniquely determined gauge connection
provides the central extension which is a 2-cocycle of the 2nd Hochschild
cohomology group. Our construction is the double-scaling limit N\to\infty,
k\to-\infty of the representation considered in the Narasimhan-Seshadri
theorem, which represents the higher-genus analog of 't Hooft's clock and shift
matrices of QCD. The concept of a noncommutative Riemann surface Sigma_\theta
is introduced as a certain C^\star-algebra. Finally we investigate the Morita
equivalence.Comment: LaTeX, 1+14 pages. Contribution to the TMR meeting ``Quantum aspects
of gauge theories, supersymmetry and unification'', Paris 1-7 September 199