35 research outputs found

    Investigation of selected genomic deletions and duplications in a cohort of 338 patients presenting with syndromic obesity by multiplex ligation-dependent probe amplification using synthetic probes

    Get PDF
    Background: Certain rare syndromes with developmental delay or intellectual disability caused by genomic copy number variants (CNVs), either deletions or duplications, are associated with higher rates of obesity. Current strategies to diagnose these syndromes typically rely on phenotype-driven investigation. However, the strong phenotypic overlap between syndromic forms of obesity poses challenges to accurate diagnosis, and many different individual cytogenetic and molecular approaches may be required. Multiplex ligation-dependent probe amplification (MLPA) enables the simultaneous analysis of multiple targeted loci in a single test, and serves as an important screening tool for large cohorts of patients in whom deletions and duplications involving specific loci are suspected. Our aim was to design a synthetic probe set for MLPA analysis to investigate in a cohort of 338 patients with syndromic obesity deletions and duplications in genomic regions that can cause this phenotype.Results: We identified 18 patients harboring copy number imbalances; 18 deletions and 5 duplications. the alterations in ten patients were delineated by chromosomal microarrays, and in the remaining cases by additional MLPA probes incorporated into commercial kits. Nine patients showed deletions in regions of known microdeletion syndromes with obesity as a clinical feature: in 2q37 (4 cases), 9q34 (1 case) and 17p11.2 (4 cases). Four patients harbored CNVs in the DiGeorge syndrome locus at 22q11.2. Two other patients had deletions within the 22q11.2 'distal' locus associated with a variable clinical phenotype and obesity in some individuals. the other three patients had a recurrent CNV of one of three susceptibility loci: at 1q21.1 'distal', 16p11.2 'distal', and 16p11.2 'proximal'.Conclusions: Our study demonstrates the utility of an MLPA-based first line screening test to the evaluation of obese patients presenting with syndromic features. the overall detection rate with the synthetic MLPA probe set was about 5.3% (18 out of 338). Our experience leads us to suggest that MLPA could serve as an effective alternative first line screening test to chromosomal microarrays for diagnosis of syndromic obesity, allowing for a number of loci (e.g., 1p36, 2p25, 2q37, 6q16, 9q34, 11p14, 16p11.2, 17p11.2), known to be clinically relevant for this patient population, to be interrogated simultaneously.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ São Paulo, Inst Biosci, Dept Genet & Evolutionary Biol, Human Genome & Stem Cell Ctr, São Paulo, BrazilUniv São Paulo, Sch Med, Children Inst, Genet Unit,Dept Pediat, São Paulo, BrazilUniv São Paulo, Sch Med, Dept Med Genet, Neurogenet Unit, BR-14049 Ribeirao Preto, BrazilUniversidade Federal de São Paulo, Ctr Med Genet, Dept Morphol, São Paulo, BrazilUniversidade Federal de São Paulo, Ctr Med Genet, Dept Morphol, São Paulo, BrazilFAPESP: 09/52523-1FAPESP: 1998/14254-2CNPq: 304381/2007-1Web of Scienc

    Investigation of 15q11-q13, 16p11.2 and 22q13 CNVs in Autism Spectrum Disorder Brazilian Individuals with and without Epilepsy

    Get PDF
    Copy number variations (CNVs) are an important cause of ASD and those located at 15q11-q13, 16p11.2 and 22q13 have been reported as the most frequent. These CNVs exhibit variable clinical expressivity and those at 15q11-q13 and 16p11.2 also show incomplete penetrance. In the present work, through multiplex ligation-dependent probe amplification (MLPA) analysis of 531 ethnically admixed ASD-affected Brazilian individuals, we found that the combined prevalence of the 15q11-q13, 16p11.2 and 22q13 CNVs is 2.1% (11/531). Parental origin could be determined in 8 of the affected individuals, and revealed that 4 of the CNVs represent de novo events. Based on CNV prediction analysis from genome-wide SNP arrays, the size of those CNVs ranged from 206 kb to 2.27 Mb and those at 15q11-q13 were limited to the 15q13.3 region. In addition, this analysis also revealed 6 additional CNVs in 5 out of 11 affected individuals. Finally, we observed that the combined prevalence of CNVs at 15q13.3 and 22q13 in ASD-affected individuals with epilepsy (6.4%) was higher than that in ASD-affected individuals without epilepsy (1.3%; p<0.014). Therefore, our data show that the prevalence of CNVs at 15q13.3, 16p11.2 and 22q13 in Brazilian ASD-affected individuals is comparable to that estimated for ASD-affected individuals of pure or predominant European ancestry. Also, it suggests that the likelihood of a greater number of positive MLPA results might be found for the 15q13.3 and 22q13 regions by prioritizing ASD-affected individuals with epilepsy.Support was provided by FAPESP-INCT - grant number: 2008/57899-7; FAPESP-CEPID - grant number: 2013/08028-1; CNPq [http://www.fapesp.br/]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Copy number variation in Williams-Beuren syndrome: suitable diagnostic strategy for developing countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Williams-Beuren syndrome (WBS; OMIM 194050) is caused by a hemizygous contiguous gene microdeletion at 7q11.23. Supravalvular aortic stenosis (SVAS), mental retardation, and overfriendliness comprise typical symptoms of WBS. Although fluorescence in situ hybridization (FISH) is considered the gold standard technique, the microsatellite DNA markers and multiplex ligation-dependent probe amplification (MLPA) could be used for to confirm the diagnosis of WBS.</p> <p>Results</p> <p>We have evaluated a total cohort of 88 patients with a suspicion clinical diagnosis of WBS using a collection of five markers (D7S1870, D7S489, D7S613, D7S2476, and D7S489_A) and a commercial MLPA kit (P029). The microdeletion was present in 64 (72.7%) patients and absent in 24 (27.3%) patients. The parental origin of deletion was maternal in 36 of 64 patients (56.3%) paternal in 28 of 64 patients (43.7%). The deletion size was 1.55 Mb in 57 of 64 patients (89.1%) and 1.84 Mb in 7 of 64 patients (10.9%). The results were concordant using both techniques, except for four patients whose microsatellite markers were uninformative. There were no clinical differences in relation to either the size or parental origin of the deletion.</p> <p>Conclusion</p> <p>MLPA was considered a faster and more economical method in a single assay, whereas the microsatellite markers could determine both the size and parental origin of the deletion in WBS. The microsatellite marker and MLPA techniques are effective in deletion detection in WBS, and both methods provide a useful diagnostic strategy mainly for developing countries.</p

    Heterozygous Mutations of FREM1 Are Associated with an Increased Risk of Isolated Metopic Craniosynostosis in Humans and Mice

    Get PDF
    The premature fusion of the paired frontal bones results in metopic craniosynostosis (MC) and gives rise to the clinical phenotype of trigonocephaly. Deletions of chromosome 9p22.3 are well described as a cause of MC with variably penetrant midface hypoplasia. In order to identify the gene responsible for the trigonocephaly component of the 9p22.3 syndrome, a cohort of 109 patients were assessed by high-resolution arrays and MLPA for copy number variations (CNVs) involving 9p22. Five CNVs involving FREM1, all of which were de novo variants, were identified by array-based analyses. The remaining 104 patients with MC were then subjected to targeted FREM1 gene re-sequencing, which identified 3 further mutant alleles, one of which was de novo. Consistent with a pathogenic role, mouse Frem1 mRNA and protein expression was demonstrated in the metopic suture as well as in the pericranium and dura mater. Micro-computed tomography based analyses of the mouse posterior frontal (PF) suture, the human metopic suture equivalent, revealed advanced fusion in all mice homozygous for either of two different Frem1 mutant alleles, while heterozygotes exhibited variably penetrant PF suture anomalies. Gene dosage-related penetrance of midfacial hypoplasia was also evident in the Frem1 mutants. These data suggest that CNVs and mutations involving FREM1 can be identified in a significant percentage of people with MC with or without midface hypoplasia. Furthermore, we present Frem1 mutant mice as the first bona fide mouse model of human metopic craniosynostosis and a new model for midfacial hypoplasia

    Growth standards of patients with Noonan and Noonan-like syndromes with mutations in the RAS/MAPK pathway

    No full text
    Noonan syndrome (NS) and Noonan-like syndromes (NLS) are autosomal dominant disorders caused by heterozygous mutations in genes of the RAS/MAPK pathway. The aim of the study was to construct specific growth charts for patients with NS and NLS. Anthropometric measurements (mean of 4.3 measurements per patient) were obtained in a mixed cross-sectional and longitudinal mode from 127 NS and 10 NLS patients with mutations identified in PTPN11 (n?=?90), SOS1 (n?=?14), RAF1 (n?=?10), KRAS (n?=?8), BRAF (n?=?11), and SHOC2 (n?=?4) genes. Height, weight, and body mass index (BMI) references were constructed using the lambda, mu, sigma (LMS) method. Patients had birth weight and length within normal ranges for gestational age although a higher preterm frequency (16%) was observed. Mean final heights were 157.4?cm [-2.4 standard deviation score (SDS)] and 148.4?cm (-2.2?SDS) for adult males and females, respectively. BMI SDS was lower when compared to Brazilian standards (BMI SDS of -0.9 and -0.5 SDS for males and females, respectively). Patients harboring mutations in RAF1 and SHOC2 gene were shorter than other genotypes, whereas patients with SOS1 and BRAF mutations had more preserved postnatal growth. In addition, patients with RAF1 and BRAF had the highest BMI whereas patients with SHOC2 and KRAS mutations had the lowest BMI. The present study established the first height, weight, and BMI reference curves for NS and NLS patients, based only on patients with a proven molecular cause. These charts can be useful for the clinical follow-up of patients with NS and NLS. (c) 2012 Wiley Periodicals, Inc.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo-FAPESP [08/50184-2, 07/59555-0]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq [301339/2008-9, 300982/2009-7, 301477/2009-4]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq

    Craniofrontonasal Syndrome Caused by Introduction of a Novel uATG in the 5′UTR of EFNB1

    No full text
    Craniofrontonasal syndrome (CFNS) is an X-linked disorder caused by EFNB1 mutations in which females are more severely affected than males. Severe male phenotypes are associated with mosaicism, supporting cellular interference for sex bias in this disease. Although many variants have been found in the coding region of EFNB1, only 2 pathogenic variants have been identified in the same nucleotide in 5′UTR, disrupting the stop codon of an upstream open reading frame (uORF). uORFs are known to be part of a wide range of post-transcriptional regulation processes, and just recently, their association with human diseases has come to light. In the present study, we analyzed EFNB1 in a female patient with typical features of CFNS. We identified a variant, located at c.-411, creating a new upstream ATG (uATG) in the 5′UTR of EFNB1, which is predicted to alter an existing uORF. Dual-luciferase reporter assays showed significant reduction in protein translation, but no difference in the mRNA levels. Our study demonstrates, for the first time, the regulatory impact of uATG formation on EFNB1 levels and suggests that this should be the target region in molecular diagnosis of CFNS cases without pathogenic variants in the coding and splice sites regions of EFNB1

    Noonan-like/multiple giant cell lesion syndrome: a separate entity from Noonan syndrome?

    No full text
    Univ Sao Paulo, Inst Crianca, Dept Pediat, Sao Paulo, BrazilInCor, Lab Genet & Mol Cardiol, Sao Paulo, BrazilUniv Sao Paulo, Dept Pathol, Sao Paulo, BrazilUniv Sao Paulo, Inst Crianca, Dept Radiol, Sao Paulo, BrazilUniv Sao Paulo, Dept Head & Neck Surg, Sao Paulo, BrazilWeb of Scienc

    Extending the Phenotype of Monosomy 1p36 Syndrome and Mapping of a Critical Region for Obesity and Hyperphagia

    No full text
    Rearrangements of 1p36 are the most frequently detected abnormalities in diagnostic testing for chromosomal cryptic imbalances and include variably sized simple terminal deletions, derivative chromosomes, interstitial deletions, and complex rearrangements. These rearrangements result in the specific pattern of malformation and neurodevelopmental disabilities that characterizes monosomy 1p36 syndrome. Thus far, no individual gene within this region has been conclusively determined to be causative of any component of the phenotype. Nor is it known if the rearrangements convey phenotypes via a haploinsufficiency mechanism or through a position effect. We have used multiplex ligation-dependent probe amplification to screen for deletions of 1p36 in a group of 154 hyperphagic and overweight/obese, PWS negative individuals, and in a separate group of 83 patients initially sent to investigate a variety of other conditions. the strategy allowed the identification and delineation of rearrangements in nine subjects with a wide spectrum of clinical presentations. Our work reinforces the association of monosomy 1p36 and obesity and hyperphagia, and further suggests that these features may be associated with non-classical manifestations of this disorder in addition to a submicroscopic deletion of similar to 2-3 Mb in size. Multiplex ligation probe amplification using the monosomy 1p36 syndrome-specific kit coupled to the subtelomeric kit is an effective approach to identify and delineate rearrangements at 1p36. (C) 2009 Wiley-Liss, Inc.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ São Paulo, Inst Biociencias, Dept Genet & Evolutionary Biol, BR-05508900 São Paulo, BrazilUniv São Paulo, Dept Pediat, Genet Unit, Children Inst,Sch Med, BR-05508900 São Paulo, BrazilUniv São Paulo, Dept Med Genet, Sch Med, Neurogenet Unit, BR-14049 Ribeirao Preto, BrazilFAPESP: 04/10380-6FAPESP: 1998/14254-2CNPq: 304381/2007-1Web of Scienc
    corecore