4,825 research outputs found

    The imprint of the equation of state on the axial w-modes of oscillating neutron stars

    Get PDF
    We discuss the dependence of the pulsation frequencies of the axial quasi-normal modes of a nonrotating neutron star upon the equation of state describing the star interior. The continued fraction method has been used to compute the complex frequencies for a set of equations of state based on different physical assumptions and spanning a wide range of stiffness. The numerical results show that the detection of axial gravitational waves would allow to discriminate between the models underlying the different equation of states, thus providing relevant information on both the structure of neutron star matter and the nature of the hadronic interactions.Comment: 9 pages, 7 figures, mn.st

    Supermassive black holes or boson stars? Hair counting with gravitational wave detectors

    Get PDF
    The evidence for supermassive Kerr black holes in galactic centers is strong and growing, but only the detection of gravitational waves will convincingly rule out other possibilities to explain the observations. The Kerr spacetime is completely specified by the first two multipole moments: mass and angular momentum. This is usually referred to as the ``no-hair theorem'', but it is really a ``two-hair'' theorem. If general relativity is the correct theory of gravity, the most plausible alternative to a supermassive Kerr black hole is a rotating boson star. Numerical calculations indicate that the spacetime of rotating boson stars is determined by the first three multipole moments (``three-hair theorem''). LISA could accurately measure the oscillation frequencies of these supermassive objects. We propose to use these measurements to ``count their hair'', unambiguously determining their nature and properties.Comment: 8 pages. This essay received an honorable mention in the Gravity Research Foundation Essay Competition, 200

    MetafĂ­sica y libertad en la filosofĂ­a antigua

    Get PDF
    In Greek philosophy there are two rival accounts of the relation between ontology and freedom. In one of them the universe has its origin in the act of free will of an intelligence. This entails, of course, that this intelligence must be free. In the other the universe comes from necessity from an impersonal being which has not the features of an intelligent being and cannot be free

    How to enhance crop production and nitrogen fluxes? A result-oriented scheme to evaluate best agri-environmental measures in Veneto Region, Italy

    Get PDF
    The cost-effectiveness of adopting agri-environmental measures (AEMs) in Europe, which combine agricultural productions with reduced N losses, is debated due to poorly targeted site-specific funding that is allocated regardless of local variability. An integrated DAYCENT model-GIS platform was developed combining pedo-climatic and agricultural systems information. The aim was to evaluate best strategies to improve N fluxes of agro-ecosystems within a perspective of sustainable intensification. Indicators of agronomic efficiency and environmental quality were considered. The results showed that agronomic benefits were observed with a continuous soil cover (conservation agriculture and cover crops), which enhanced nitrogen use efficiency (+17%) and crop yields (+34%), although in some cases these might be overestimated due to modelling limitations. An overall environmental improvement was found with continuous soil cover and long-term change from mineral to organic inputs (NLeach 45 Mg ha 121), which were effective in the sandy soils of western and eastern Veneto with low SOM, improving the soil-water balance and nutrients availability over time. Results suggest that AEM subsidies should be allocated at a site-specific level that includes pedo-climatic variability, following a result-oriented approach

    Constraining properties of the black hole population using LISA

    Get PDF
    LISA should detect gravitational waves from tens to hundreds of systems containing black holes with mass in the range from 10 thousand to 10 million solar masses. Black holes in this mass range are not well constrained by current electromagnetic observations, so LISA could significantly enhance our understanding of the astrophysics of such systems. In this paper, we describe a framework for combining LISA observations to make statements about massive black hole populations. We summarise the constraints that LISA observations of extreme-mass-ratio inspirals might be able to place on the mass function of black holes in the LISA range. We also describe how LISA observations can be used to choose between different models for the hierarchical growth of structure in the early Universe. We consider four models that differ in their prescription for the initial mass distribution of black hole seeds, and in the efficiency of accretion onto the black holes. We show that with as little as 3 months of LISA data we can clearly distinguish between these models, even under relatively pessimistic assumptions about the performance of the detector and our knowledge of the gravitational waveforms.Comment: 12 pages, 3 figures, submitted to Class. Quantum Grav. for proceedings of 8th LISA Symposium; v2 minor changes for consistency with accepted versio

    Quasinormal Modes Beyond Kerr

    Get PDF
    The quasinormal modes (QNMs) of a black hole spacetime are the free, decaying oscillations of the spacetime, and are well understood in the case of Kerr black holes. We discuss a method for computing the QNMs of spacetimes which are slightly deformed from Kerr. We mention two example applications: the parametric, turbulent instability of scalar fields on a background which includes a gravitational QNM, and the shifts to the QNM frequencies of Kerr when the black hole is weakly charged. This method may be of use in studies of black holes which are deformed by external fields or are solutions to alternative theories of gravity.Comment: Proceedings of the Sant Cugat Forum on Astrophysics (2014). Session on 'Gravitational Wave Astrophysics.' 7 page

    Non-radial oscillation modes as a probe of density discontinuities in neutron stars

    Get PDF
    A phase transition occurring in the inner core of a neutron star could be associated to a density discontinuity that would affect the frequency spectrum of the non-radial oscillation modes in two ways. Firstly, it would produce a softening of the equation of state, leading to more compact equilibrium configurations and changing the frequency of the fundamental and pressure modes of the neutron star. Secondly, a new non-zero frequency g-- mode would appear, associated to each discontinuity. These discontinuity g--modes have typical frequencies larger than those of g--modes previously studied in the literature (thermal, core g-- modes, or g--modes due to chemical inhomogeneities in the outer layers), and smaller than that of the fundamental mode; therefore they should be distinguishable from the other modes of non radial oscillation. In this paper we investigate how high density discontinuities change the frequency spectrum of the non-radial oscillations, in the framework of the general relativistic theory of stellar perturbations. Our purpose is to understand whether a gravitational signal, emitted at the frequencies of the quasi normal modes, may give some clear information on the equation of state of the neutron star and, in particular, on the parameters that characterize the density discontinuity. We discuss some astrophysical processes that may be associated to the excitation of these modes, and estimate how much gravitational energy should the modes convey to produce a signal detectable by high frequency gravitational detectors.Comment: submitted to MNRA

    Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity

    Full text link
    We study the transition from inspiral to plunge in general relativity by computing gravitational waveforms of non-spinning, equal-mass black-hole binaries. We consider three sequences of simulations, starting with a quasi-circular inspiral completing 1.5, 2.3 and 9.6 orbits, respectively, prior to coalescence of the holes. For each sequence, the binding energy of the system is kept constant and the orbital angular momentum is progressively reduced, producing orbits of increasing eccentricity and eventually a head-on collision. We analyze in detail the radiation of energy and angular momentum in gravitational waves, the contribution of different multipolar components and the final spin of the remnant. We find that the motion transitions from inspiral to plunge when the orbital angular momentum L=L_crit is about 0.8M^2. For L<L_crit the radiated energy drops very rapidly. Orbits with L of about L_crit produce our largest dimensionless Kerr parameter for the remnant, j=J/M^2=0.724. Generalizing a model recently proposed by Buonanno, Kidder and Lehner to eccentric binaries, we conjecture that (1) j=0.724 is the maximal Kerr parameter that can be obtained by any merger of non-spinning holes, and (2) no binary merger (even if the binary members are extremal Kerr black holes with spins aligned to the orbital angular momentum, and the inspiral is highly eccentric) can violate the cosmic censorship conjecture.Comment: Added sequence of long inspirals to the study. To match published versio

    Quasinormal modes of Kerr-Newman black holes: coupling of electromagnetic and gravitational perturbations

    Full text link
    We compute numerically the quasinormal modes of Kerr-Newman black holes in the scalar case, for which the perturbation equations are separable. Then we study different approximations to decouple electromagnetic and gravitational perturbations of the Kerr-Newman metric, computing the corresponding quasinormal modes. Our results suggest that the Teukolsky-like equation derived by Dudley and Finley gives a good approximation to the dynamics of a rotating charged black hole for Q<M/2. Though insufficient to deal with Kerr-Newman based models of elementary particles, the Dudley-Finley equation should be adequate for astrophysical applications.Comment: 13 pages, 3 figures. Minor changes to match version accepted in Phys. Rev.

    LISA observations of massive black hole mergers: event rates and issues in waveform modelling

    Full text link
    The observability of gravitational waves from supermassive and intermediate-mass black holes by the forecoming Laser Interferometer Space Antenna (LISA), and the physics we can learn from the observations, will depend on two basic factors: the event rates for massive black hole mergers occurring in the LISA best sensitivity window, and our theoretical knowledge of the gravitational waveforms. We first provide a concise review of the literature on LISA event rates for massive black hole mergers, as predicted by different formation scenarios. Then we discuss what (in our view) are the most urgent issues to address in terms of waveform modelling. For massive black hole binary inspiral these include spin precession, eccentricity, the effect of high-order Post-Newtonian terms in the amplitude and phase, and an accurate prediction of the transition from inspiral to plunge. For black hole ringdown, numerical relativity will ultimately be required to determine the relative quasinormal mode excitation, and to reduce the dimensionality of the template space in matched filtering.Comment: 14 pages, 2 figures. Added section with conclusions and outlook. Matches version to appear in the proceedings of 10th Annual Gravitational Wave Data Analysis Workshop (GWDAW 10), Brownsville, Texas, 14-17 Dec 200
    • …
    corecore