2,973 research outputs found
Quasi-periodic solutions of completely resonant forced wave equations
We prove existence of quasi-periodic solutions with two frequencies of
completely resonant, periodically forced nonlinear wave equations with periodic
spatial boundary conditions. We consider both the cases the forcing frequency
is: (Case A) a rational number and (Case B) an irrational number.Comment: 25 pages, 1 figur
Italian food terms and their collocations in America : a corpus-based, cultural and lexicological perspective
America has been in love with Italian food since it first arrived on its shores at the end of the 19th century during the first migration wave. Since then, a process of culinary but also linguistic hybridization has transformed Italian traditional recipes made in the US and has given origin to new English phrases involving Italian food terms, often outside the cuisine boundaries. The present work sets out to investigate the cultural, culinary and, above all, terminological development of Italian food and its linguistic labels in America through analysis of collocations extracted from two large American English corpora
Slowly Rotating Anisotropic Neutron Stars in General Relativity and Scalar-Tensor Theory
Some models (such as the Skyrme model, a low-energy effective field theory
for QCD) suggest that the high-density matter prevailing in neutron star
interiors may be significantly anisotropic. Anisotropy is known to affect the
bulk properties of nonrotating neutron stars in General Relativity. In this
paper we study the effects of anisotropy on slowly rotating stars in General
Relativity. We also consider one of the most popular extensions of Einstein's
theory, namely scalar-tensor theories allowing for spontaneous scalarization (a
phase transition similar to spontaneous magnetization in ferromagnetic
materials). Anisotropy affects the moment of inertia of neutron stars (a
quantity that could potentially be measured in binary pulsar systems) in both
theories. We find that the effects of scalarization increase (decrease) when
the tangential pressure is bigger (smaller) than the radial pressure, and we
present a simple criterion to determine the onset of scalarization by
linearizing the scalar-field equation. Our calculations suggest that binary
pulsar observations may constrain the degree of anisotropy or even, more
optimistically, provide evidence for anisotropy in neutron star cores.Comment: 19 pages, 7 figures, 1 table. Matches version in press in CQG. Fixed
small typo
How to enhance crop production and nitrogen fluxes? A result-oriented scheme to evaluate best agri-environmental measures in Veneto Region, Italy
The cost-effectiveness of adopting agri-environmental measures (AEMs) in Europe, which combine agricultural productions with reduced N losses, is debated due to poorly targeted site-specific funding that is allocated regardless of local variability. An integrated DAYCENT model-GIS platform was developed combining pedo-climatic and agricultural systems information. The aim was to evaluate best strategies to improve N fluxes of agro-ecosystems within a perspective of sustainable intensification. Indicators of agronomic efficiency and environmental quality were considered. The results showed that agronomic benefits were observed with a continuous soil cover (conservation agriculture and cover crops), which enhanced nitrogen use efficiency (+17%) and crop yields (+34%), although in some cases these might be overestimated due to modelling limitations. An overall environmental improvement was found with continuous soil cover and long-term change from mineral to organic inputs (NLeach 45 Mg ha 121), which were effective in the sandy soils of western and eastern Veneto with low SOM, improving the soil-water balance and nutrients availability over time. Results suggest that AEM subsidies should be allocated at a site-specific level that includes pedo-climatic variability, following a result-oriented approach
Ultralight boson cloud depletion in binary systems
Ultralight scalars can extract rotational energy from astrophysical black
holes through superradiant instabilities, forming macroscopic boson clouds.
This process is most efficient when the Compton wavelength of the boson is
comparable to the size of the black hole horizon, i.e. when the "gravitational
fine structure constant" . If the black
hole/cloud system is in a binary, tidal perturbations from the companion can
produce resonant transitions between the energy levels of the cloud, depleting
it by an amount that depends on the nature of the transition and on the
parameters of the binary. Previous cloud depletion estimates considered
binaries in circular orbit and made the approximation . Here we
use black hole perturbation theory to compute instability rates and decay
widths for generic values of , and we show that this leads to much
larger cloud depletion estimates when . We also study
eccentric binary orbits. We show that in this case resonances can occur at all
harmonics of the orbital frequency, significantly extending the range of
frequencies where cloud depletion may be observable with gravitational wave
interferometers.Comment: 12 pages, 6 figures. v2: references added, matches published versio
Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity
We study the transition from inspiral to plunge in general relativity by
computing gravitational waveforms of non-spinning, equal-mass black-hole
binaries. We consider three sequences of simulations, starting with a
quasi-circular inspiral completing 1.5, 2.3 and 9.6 orbits, respectively, prior
to coalescence of the holes. For each sequence, the binding energy of the
system is kept constant and the orbital angular momentum is progressively
reduced, producing orbits of increasing eccentricity and eventually a head-on
collision. We analyze in detail the radiation of energy and angular momentum in
gravitational waves, the contribution of different multipolar components and
the final spin of the remnant. We find that the motion transitions from
inspiral to plunge when the orbital angular momentum L=L_crit is about 0.8M^2.
For L<L_crit the radiated energy drops very rapidly. Orbits with L of about
L_crit produce our largest dimensionless Kerr parameter for the remnant,
j=J/M^2=0.724. Generalizing a model recently proposed by Buonanno, Kidder and
Lehner to eccentric binaries, we conjecture that (1) j=0.724 is the maximal
Kerr parameter that can be obtained by any merger of non-spinning holes, and
(2) no binary merger (even if the binary members are extremal Kerr black holes
with spins aligned to the orbital angular momentum, and the inspiral is highly
eccentric) can violate the cosmic censorship conjecture.Comment: Added sequence of long inspirals to the study. To match published
versio
Black holes in the low mass gap: Implications for gravitational wave observations
Binary neutron-star mergers will predominantly produce black-hole remnants of
mass , thus populating the putative \emph{low mass gap}
between neutron stars and stellar-mass black holes. If these low-mass black
holes are in dense astrophysical environments, mass segregation could lead to
"second-generation" compact binaries merging within a Hubble time. In this
paper, we investigate possible signatures of such low-mass compact binary
mergers in gravitational-wave observations. We show that this unique population
of objects, if present, will be uncovered by the third-generation
gravitational-wave detectors, such as Cosmic Explorer and Einstein Telescope.
Future joint measurements of chirp mass and effective spin
could clarify the formation scenario of compact objects in the
low mass gap. As a case study, we show that the recent detection of GW190425
(along with GW170817) favors a double Gaussian mass model for neutron stars,
under the assumption that the primary in GW190425 is a black hole formed from a
previous binary neutron star merger.Comment: 8 pages, 4 figures, 1 table. v4: matches the version accepted for
publication in Phys. Rev.
Gravitational instabilities of superspinars
Superspinars are ultracompact objects whose mass M and angular momentum J
violate the Kerr bound (cJ/GM^2>1). Recent studies analyzed the observable
consequences of gravitational lensing and accretion around superspinars in
astrophysical scenarios. In this paper we investigate the dynamical stability
of superspinars to gravitational perturbations, considering either purely
reflecting or perfectly absorbing boundary conditions at the "surface" of the
superspinar. We find that these objects are unstable independently of the
boundary conditions, and that the instability is strongest for relatively small
values of the spin. Also, we give a physical interpretation of the various
instabilities that we find. Our results (together with the well-known fact that
accretion tends to spin superspinars down) imply that superspinars are very
unlikely astrophysical alternatives to black holes.Comment: 15 pages, 9 figures, 1 table. v2: Fig. 8 and Section I improved. v3:
minor changes to match the published versio
- …