34 research outputs found

    Skeletal muscle IL-6 regulates muscle substrate utilization and adipose tissue metabolism during recovery from an acute bout of exercise

    Get PDF
    An acute bout of exercise imposes a major challenge on whole-body metabolism and metabolic adjustments are needed in multiple tissues during recovery to reestablish metabolic homeostasis. It is currently unresolved how this regulation is orchestrated between tissues. This study was undertaken to clarify the role of skeletal muscle derived interleukin 6 (IL-6) in the coordination of the metabolic responses during recovery from acute exercise. Skeletal muscle specific IL-6 knockout (IL-6 MKO) and littermate Control mice were rested or ran on a treadmill for 2h. Plasma, skeletal muscle, liver and adipose tissue were obtained after 6 and 10h of recovery. Non-exercised IL-6 MKO mice had higher plasma lactate and lower plasma non-esterified fatty acids than Controls. The activity of pyruvate dehydrogenase in the active form was, in skeletal muscle, higher in IL-6 MKO mice than Controls in non-exercised mice and 6h after exercise. IL-6 MKO mice had lower glucose transporter 4 protein content in inguinal adipose tissue (WAT) than Control in non-exercised mice and 10h after treadmill running. Epididymal WAT hormone sensitive lipase phosphorylation and inguinal WAT mitogen activated kinase P38 phosphorylation were higher in IL-6 MKO than Control mice 6h after exercise. These findings indicate that skeletal muscle IL-6 may play an important role in the regulation of substrate utilization in skeletal muscle, basal and exercise-induced adaptations in adipose tissue glucose uptake and lipolysis during recovery from exercise. Together this indicates that skeletal muscle IL-6 contributes to reestablishing metabolic homeostasis during recovery from exercise by regulating WAT and skeletal muscle metabolism

    Skeletal muscle IL-6 and regulation of liver metabolism during high-fat diet and exercise training

    Get PDF
    Altres ajuts: The study was supported by grants from the Lundbeck Foundation, The Danish Research Foundation, The Danish Council for Independent Research in the Natural Sciences, and The Augustinus Foundation. Centre of Inflammation and Metabolism (CIM) is supported by a grant from the Danish National Research Foundation (#02-512-55).Interleukin ()-6 is released from skeletal muscle (SkM) during exercise and has been shown to affect hepatic metabolism. It is, however, unknown whether SkM -6 is involved in the regulation of exercise training-induced counteraction of changes in carbohydrate and lipid metabolism in the liver in response to high-fat diet () feeding. Male SkM-specific -6 () and Floxed mice were subjected to Chow diet, or combined with exercise training ( ExTr) for 16 weeks. Hepatic phosphoenolpyruvate carboxykinase () protein content decreased with both and ExTr in Floxed mice, but increased in -6 mice on . In addition, the intrahepatic glucose concentration was in -6 mice higher in than chow. Within ExTr mice, hepatic glucose-6-phosphatase (G6Pase) 36 a protein content was higher in -6 than Floxed mice. Hepatic pyruvate dehydrogenase kinase () 4 and 2 protein content was in Floxed mice lower in ExTr than Chow. In addition, hepatic 1-phosphorylation was higher and 1 protein lower in . Together this suggests that SkM -6 regulates hepatic glucose metabolism, but does not seem to be of major importance for the regulation of oxidative capacity or lipogenesis in liver during or combined with exercise training

    Skeletal muscle interleukin 6 in fasting and exercise-induced metabolic regulation in liver and adipose tissue

    No full text

    Skeletal muscle interleukin-6 regulates metabolic factors in iWAT during HFD and exercise training

    No full text
    To investigate the role of skeletal muscle (SkM) interleukin (IL)-6 in the regulation of adipose tissue metabolism. Muscle-specific IL-6 knockout (IL-6 MKO) and IL-6 loxP/loxP (Floxed) mice were subjected to standard rodent diet (Chow), high-fat diet (HFD), or HFD in combination with exercise training (HFD ExTr) for 16 weeks. Total fat mass increased (P < 0.05) in both genotypes with HFD. However, HFD IL-6 MKO mice had lower (P < 0.05) inguinal adipose tissue (iWAT) mass than HFD Floxed mice. Accordingly, iWAT glucose transporter 4 (GLUT4) protein content, 5'AMP activated protein kinase (AMPK) Thr172 phosphorylation, and fatty acid synthase (FAS) mRNA content were lower (P < 0.05) in IL-6 MKO than Floxed mice on Chow. In addition, iWAT AMPK Thr172 and hormone-sensitive lipase (HSL) Ser565 phosphorylation as well as perilipin protein content was higher (P < 0.05) in HFD IL-6 MKO than HFD Floxed mice, and pyruvate dehydrogenase E1α (PDH-E1α) protein content was higher (P < 0.05) in HFD ExTr IL-6 MKO than HFD ExTr Floxed mice. These findings indicate that SkM IL-6 affects iWAT mass through regulation of glucose uptake capacity as well as lipogenic and lipolytic factors

    Skeletal muscle interleukin-6 regulates metabolic factors in i during and exercise training

    No full text
    To investigate the role of skeletal muscle (SkM) interleukin (IL)-6 in the regulation of adipose tissue metabolism. Muscle-specific IL-6 knockout (IL-6 MKO) and IL-6 loxP/loxP (Floxed) mice were subjected to standard rodent diet (Chow), high-fat diet (HFD), or HFD in combination with exercise training (HFD ExTr) for 16 weeks. Total fat mass increased (P < 0.05) in both genotypes with HFD. However, HFD IL-6 MKO mice had lower (P < 0.05) inguinal adipose tissue (iWAT) mass than HFD Floxed mice. Accordingly, iWAT glucose transporter 4 (GLUT4) protein content, 5'AMP activated protein kinase (AMPK) Thr172 phosphorylation, and fatty acid synthase (FAS) mRNA content were lower (P < 0.05) in IL-6 MKO than Floxed mice on Chow. In addition, iWAT AMPK Thr172 and hormone-sensitive lipase (HSL) Ser565 phosphorylation as well as perilipin protein content was higher (P < 0.05) in HFD IL-6 MKO than HFD Floxed mice, and pyruvate dehydrogenase E1α (PDH-E1α) protein content was higher (P < 0.05) in HFD ExTr IL-6 MKO than HFD ExTr Floxed mice. These findings indicate that SkM IL-6 affects iWAT mass through regulation of glucose uptake capacity as well as lipogenic and lipolytic factors
    corecore