251 research outputs found

    Quantum Reed-Solomon Codes

    Get PDF
    After a brief introduction to both quantum computation and quantum error correction, we show how to construct quantum error-correcting codes based on classical BCH codes. With these codes, decoding can exploit additional information about the position of errors. This error model - the quantum erasure channel - is discussed. Finally, parameters of quantum BCH codes are provided.Comment: Summary only (2 pages), for the full version see: Proceedings Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-13), Lecture Notes in Computer Science 1719, Springer, 199

    Perfect quantum error correction coding in 24 laser pulses

    Get PDF
    An efficient coding circuit is given for the perfect quantum error correction of a single qubit against arbitrary 1-qubit errors within a 5 qubit code. The circuit presented employs a double `classical' code, i.e., one for bit flips and one for phase shifts. An implementation of this coding circuit on an ion-trap quantum computer is described that requires 26 laser pulses. A further circuit is presented requiring only 24 laser pulses, making it an efficient protection scheme against arbitrary 1-qubit errors. In addition, the performance of two error correction schemes, one based on the quantum Zeno effect and the other using standard methods, is compared. The quantum Zeno error correction scheme is found to fail completely for a model of noise based on phase-diffusion.Comment: Replacement paper: Lost two laser pulses gained one author; added appendix with circuits easily implementable on an ion-trap compute

    Two-Bit Gates are Universal for Quantum Computation

    Full text link
    A proof is given, which relies on the commutator algebra of the unitary Lie groups, that quantum gates operating on just two bits at a time are sufficient to construct a general quantum circuit. The best previous result had shown the universality of three-bit gates, by analogy to the universality of the Toffoli three-bit gate of classical reversible computing. Two-bit quantum gates may be implemented by magnetic resonance operations applied to a pair of electronic or nuclear spins. A ``gearbox quantum computer'' proposed here, based on the principles of atomic force microscopy, would permit the operation of such two-bit gates in a physical system with very long phase breaking (i.e., quantum phase coherence) times. Simpler versions of the gearbox computer could be used to do experiments on Einstein-Podolsky-Rosen states and related entangled quantum states.Comment: 21 pages, REVTeX 3.0, two .ps figures available from author upon reques

    Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments

    Get PDF
    The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth’s upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105 nm with unprecedented spectral resolution (0.1 nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazing-incidence spectrograph that measures the solar EUV irradiance in the 5 to 37 nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105 nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39 nm, and a MEGS-Photometer measures the Sun’s bright hydrogen emission at 121.6 nm. The EVE data products include a near real-time space-weather product (Level 0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15 minutes. The EVE higher-level products are Level 2 with the solar EUV irradiance at higher time cadence (0.25 seconds for photometers and ten seconds for spectrographs) and Level 3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth’s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.United States. National Aeronautics and Space Administration (contract NAS5-02140

    Entropy and Quantum Kolmogorov Complexity: A Quantum Brudno's Theorem

    Full text link
    In classical information theory, entropy rate and Kolmogorov complexity per symbol are related by a theorem of Brudno. In this paper, we prove a quantum version of this theorem, connecting the von Neumann entropy rate and two notions of quantum Kolmogorov complexity, both based on the shortest qubit descriptions of qubit strings that, run by a universal quantum Turing machine, reproduce them as outputs.Comment: 26 pages, no figures. Reference to publication added: published in the Communications in Mathematical Physics (http://www.springerlink.com/content/1432-0916/

    The Relation Between the Surface Brightness and the Diameter for Galactic Supernova Remnants

    Full text link
    In this work, we have constructed a relation between the surface brightness (Σ\Sigma) and diameter (D) of Galactic C- and S-type supernova remnants (SNRs). In order to calibrate the Σ\Sigma-D dependence, we have carefully examined some intrinsic (e.g. explosion energy) and extrinsic (e.g. density of the ambient medium) properties of the remnants and, taking into account also the distance values given in the literature, we have adopted distances for some of the SNRs which have relatively more reliable distance values. These calibrator SNRs are all C- and S-type SNRs, i.e. F-type SNRs (and S-type SNR Cas A which has an exceptionally high surface brightness) are excluded. The Sigma-D relation has 2 slopes with a turning point at D=36.5 pc: Σ\Sigma(at 1 GHz)=8.46.3+19.5^{+19.5}_{-6.3}×1012\times10^{-12} D5.990.33+0.38^{{-5.99}^{+0.38}_{-0.33}} Wm2^{-2}Hz1^{-1}ster1^{-1} (for Σ\Sigma3.7×1021\le3.7\times10^{-21} Wm2^{-2}Hz1^{-1}ster1^{-1} and D\ge36.5 pc) and Σ\Sigma(at 1 GHz)=2.71.4+2.1^{+2.1}_{-1.4}×\times 1017^{-17} D2.470.16+0.20^{{-2.47}^{+0.20}_{-0.16}} Wm2^{-2}Hz1^{-1}ster1^{-1} (for Σ\Sigma>3.7×1021>3.7\times10^{-21} Wm2^{-2}Hz1^{-1}ster1^{-1} and D<<36.5 pc). We discussed the theoretical basis for the Σ\Sigma-D dependence and particularly the reasons for the change in slope of the relation were stated. Added to this, we have shown the dependence between the radio luminosity and the diameter which seems to have a slope close to zero up to about D=36.5 pc. We have also adopted distance and diameter values for all of the observed Galactic SNRs by examining all the available distance values presented in the literature together with the distances found from our Σ\Sigma-D relation.Comment: 45 pages, 2 figures, accepted for publication in Astronomical and Astrophysical Transaction

    Mitochondrionopathy Phenotype in Doxorubicin-Treated Wistar Rats Depends on Treatment Protocol and Is Cardiac-Specific

    Get PDF
    Although doxorubicin (DOX) is a very effective antineoplastic agent, its clinical use is limited by a dose-dependent, persistent and cumulative cardiotoxicity, whose mechanism remains to be elucidated. Previous works in animal models have failed to use a multi-organ approach to demonstrate that DOX-associated toxicity is selective to the cardiac tissue. In this context, the present work aims to investigate in vivo DOX cardiac, hepatic and renal toxicity in the same animal model, with special relevance on alterations of mitochondrial bioenergetics. To this end, male Wistar rats were sub-chronically (7 wks, 2 mg/Kg) or acutely (20 mg/Kg) treated with DOX and sacrificed one week or 24 hours after the last injection, respectively. Alterations of mitochondrial bioenergetics showed treatment-dependent differences between tissues. No alterations were observed for cardiac mitochondria in the acute model but decreased ADP-stimulated respiration was detected in the sub-chronic treatment. In the acute treatment model, ADP-stimulated respiration was increased in liver and decreased in kidney mitochondria. Aconitase activity, a marker of oxidative stress, was decreased in renal mitochondria in the acute and in heart in the sub-chronic model. Interestingly, alterations of cardiac mitochondrial bioenergetics co-existed with an absence of echocardiograph, histopathological or ultra-structural alterations. Besides, no plasma markers of cardiac injury were found in any of the time points studied. The results confirm that alterations of mitochondrial function, which are more evident in the heart, are an early marker of DOX-induced toxicity, existing even in the absence of cardiac functional alterations

    Modulation of epithelial sodium channel (ENaC) expression in mouse lung infected with Pseudomonas aeruginosa

    Get PDF
    BACKGROUND: The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC) and the catalytic subunit of Na(+)-K(+)-ATPase. METHODS: Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c) and susceptible (DBA/2, C57BL/6 and A/J) mouse strains. The mRNA expression of ENaC and Na(+)-K(+)-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection. RESULTS: The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p < 0.05). The relative expression of βENaC mRNA was transiently increased to a median of 241%, 24 h post-infection before decreasing to a median of 43% and 54% of control on days 3 and 7 post-infection (p < 0.05). No significant modulation of γENaC mRNA was detected although the general pattern of expression of the subunit was similar to α and β subunits. No modulation of α(1)Na(+)-K(+)-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains. CONCLUSIONS: These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs
    corecore