5,547 research outputs found
The effects of upcoding, cream skimming and readmissions on the Italian hospitals efficiency: a population–based investigation
In this paper we analyze the effects of some distortions induced by prospective payment system, i.e. Upcoding, Cream Skimming and Readmissions, on hospitals’ technical efficiency. We estimate a production function using a population–based dataset composed by all active hospitals in an Italian region during the period 1998–2007. We show that cream skimming and upcoding have a negative impact on hospitals’ technical efficiency, while readmissions have a positive effect. Moreover, we find that private hospitals are more engaged in cream skimming than public and not–for–profit ones, while we observe no ownership differences regarding upcoding. Not–for–profit hospitals have the highest readmission index. Last, not–for–profit and public hospitals have the same efficiency levels, while private hospitals have the lowest technical efficiency.Upcoding, Cream Skimming, Readmission, Hospital Technical Efficiency, Ownership.
Do interactions between plant roots and the rhizosphere affect parasitoid behaviour?
Multitrophic interactions are powerful forces shaping the structure of living communities. Plants encounter a great diversity of organisms in their environment: some of these interactions are beneficial (e.g. symbiotic fungi and insect pollinators) while some are detrimental (e.g. herbivorous insects and pathogenic micro-organisms). Multitrophic interactions between below-ground and above-ground organisms are receiving increasing attention because they may influence plant defences against biotic and abiotic stresses. In this study we show that an arbuscular mycorrhizal symbiosis makes tomato plants significantly more resistant towards aphids, by enhancing both direct defences, both attractivity towards aphid parasitoids
Thermal States as Convex Combinations of Matrix Product States
We study thermal states of strongly interacting quantum spin chains and prove
that those can be represented in terms of convex combinations of matrix product
states. Apart from revealing new features of the entanglement structure of
Gibbs states our results provide a theoretical justification for the use of
White's algorithm of minimally entangled typical thermal states. Furthermore,
we shed new light on time dependent matrix product state algorithms which yield
hydrodynamical descriptions of the underlying dynamics.Comment: v3: 10 pages, 2 figures, final published versio
Simultaneous Multiwavelength Observations of Magnetic Activity in Ultracool Dwarfs. IV. The Active, Young Binary NLTT 33370 AB (=2MASS J13142039+1320011)
We present multi-epoch simultaneous radio, optical, H{\alpha}, UV, and X-ray
observations of the active, young, low-mass binary NLTT 33370 AB (blended
spectral type M7e). This system is remarkable for its extreme levels of
magnetic activity: it is the most radio-luminous ultracool dwarf (UCD) known,
and here we show that it is also one of the most X-ray luminous UCDs known. We
detect the system in all bands and find a complex phenomenology of both flaring
and periodic variability. Analysis of the optical light curve reveals the
simultaneous presence of two periodicities, 3.7859 0.0001 and 3.7130
0.0002 hr. While these differ by only ~2%, studies of differential
rotation in the UCD regime suggest that it cannot be responsible for the two
signals. The system's radio emission consists of at least three components:
rapid 100% polarized flares, bright emission modulating periodically in phase
with the optical emission, and an additional periodic component that appears
only in the 2013 observational campaign. We interpret the last of these as a
gyrosynchrotron feature associated with large-scale magnetic fields and a cool,
equatorial plasma torus. However, the persistent rapid flares at all rotational
phases imply that small-scale magnetic loops are also present and reconnect
nearly continuously. We present an SED of the blended system spanning more than
9 orders of magnitude in wavelength. The significant magnetism present in NLTT
33370 AB will affect its fundamental parameters, with the components' radii and
temperatures potentially altered by ~+20% and ~-10%, respectively. Finally, we
suggest spatially resolved observations that could clarify many aspects of this
system's nature.Comment: emulateapj, 22 pages, 15 figures, ApJ in press; v2: fixes low-impact
error in Figure 15; v3: now in-pres
An expression for the water-sediment moving layer in unsteady flows valid for open channels and embankments
Abstract. During the floods, the effects of sediment transport in river beds are particulary significant and can be studied through the evolution of the water-sediment layer which moves in the lower part of a flow, named "moving layer". Moving layer variations along rivers lead to depositions and erosions and are typically unsteady, but are often tackled with expressions developed for steady (equilibrium) conditions. In this paper, we develop an expression for the moving layer in unsteady conditions and calibrate it with experimental data. During laboratory tests, we have in fact reproduced a rapidly changing unsteady flow by the erosion of a granular steep slope. Results have shown a clear tendency of the moving layer, for fixed discharges, toward equilibrium conditions. Knowing the equilibrium achievement has presented many difficulties, being influenced by the choice of the equilibrium expression and moreover by the estimation of the parameters involved (for example friction angle). Since we used only data relevant to hyper-concentrated mono-dimensional flows for the calibration – occurring for slope gradients in the range 0.03–0.20 – our model can be applied both on open channels and on embankments/dams, providing that the flows can be modelled as mono-dimensional, and that slopes and applied shear stress levels fall within the considered ranges
- …