17 research outputs found

    Physiologically Based Kinetic Modeling-Facilitated Reverse Dosimetry to Predict in Vivo Red Blood Cell Acetylcholinesterase Inhibition following Exposure to Chlorpyrifos in the Caucasian and Chinese Population

    Get PDF
    Organophosphates have a long history of use as insecticides over the world. The aim of the present study was to investigate the interethnic differences in kinetics, biomarker formation, and in vivo red blood cell acetylcholinesterase inhibition of chlorpyrifos (CPF) in the Chinese and the Caucasian population. To this purpose, physiologically based kinetic models for CPF in both the Chinese and Caucasian population were developed, and used to study time-and dose-dependent interethnic variation in urinary biomarkers and to convert concentration-response curves for red blood cell acetylcholinesterase inhibition to in vivo dose-response curves in these 2 populations by reverse dosimetry. The results obtained revealed a marked interethnic difference in toxicokinetics of CPF, with lower urinary biomarker levels at similar dose levels and slower CPF bioactivation and faster chlorpyrifos-oxon detoxification in the Chinese compared with the Caucasian population, resulting in 5-to 6-fold higher CPF sensitivity of the Caucasian than the Chinese population. These differences might be related to variation in the frequency of single-nucleotide polymorphisms for the major biotransformation enzymes involved. To conclude, the interethnic variation in kinetics of CPF may affect both its biomarker-based exposure assessment and its toxicity and risk assessment and physiologically based kinetic modeling facilitates the characterization and quantification of these interethnic variations.</p

    In vivo validation of DNA adduct formation by estragole in rats predicted by physiologically based biodynamic modelling

    Get PDF
    Estragole is a naturally occurring food-borne genotoxic compound found in a variety of food sources, including spices and herbs. This results in human exposure to estragole via the regular diet. The objective of this study was to quantify the dose-dependent estragole-DNA adduct formation in rat liver and the urinary excretion of 1'-hydroxyestragole glucuronide in order to validate our recently developed physiologically based biodynamic (PBBD) model. Groups of male outbred Sprague Dawley rats (n = 10, per group) were administered estragole once by oral gavage at dose levels of 0 (vehicle control), 5, 30, 75, 150, and 300mg estragole/kg bw and sacrificed after 48h. Liver, kidney and lungs were analysed for DNA adducts by LC-MS/MS. Results obtained revealed a dose-dependent increase in DNA adduct formation in the liver. In lungs and kidneys DNA adducts were detected at lower levels than in the liver confirming the occurrence of DNA adducts preferably in the target organ, the liver. The results obtained showed that the PBBD model predictions for both urinary excretion of 1'-hydroxyestragole glucuronide and the guanosine adduct formation in the liver were comparable within less than an order of magnitude to the values actually observed in vivo. The PBBD model was refined using liver zonation to investigate whether its predictive potential could be further improved. The results obtained provide the first data set available on estragole-DNA adduct formation in rats and confirm their occurrence in metabolically active tissues, i.e. liver, lung and kidney, while the significantly higher levels found in liver are in accordance with the liver as the target organ for carcinogenicity. This opens the way towards future modelling of dose-dependent estragole liver DNA adduct formation in huma

    Defining in vivo dose-response curves for kidney DNA adduct formation of aristolochic acid I in rat, mouse and human by an in vitro and physiologically based kinetic modeling approach

    Get PDF
    Aristolochic acid I (AAI) is a well-known genotoxic kidney carcinogen. Metabolic conversion of AAI into the DNA-reactive aristolactam-nitrenium ion is involved in the mode of action of tumor formation. This study aims to predict in vivo AAI-DNA adduct formation in the kidney of rat, mouse and human by translating the in vitro concentration-response curves for AAI-DNA adduct formation to the in vivo situation using physiologically based kinetic (PBK) modeling-based reverse dosimetry. DNA adduct formation in kidney proximal tubular LLC-PK1 cells exposed to AAI was quantified by liquid chromatography-electrospray ionization-tandem mass spectrometry. Subsequently, the in vitro concentration-response curves were converted to predicted in vivo dose-response curves in rat, mouse and human kidney using PBK models. Results obtained revealed a dose-dependent increase in AAI-DNA adduct formation in the rat, mouse and human kidney and the predicted DNA adduct levels were generally within an order of magnitude compared with values reported in the literature. It is concluded that the combined in vitro PBK modeling approach provides a novel way to define in vivo dose-response curves for kidney DNA adduct formation in rat, mouse and human and contributes to the reduction, refinement and replacement of animal testing

    Physiologically based kinetic modeling of hesperidin metabolism and its use to predict in vivo effective doses in humans

    Get PDF
    Scope: To develop a physiologically based kinetic (PBK) model that describes the absorption, distribution, metabolism, and excretion of hesperidin in humans, enabling the translation of in vitro concentration-response curves to in vivo dose-response curves. Methods and results: The PBK model for hesperidin in humans was developed based on in vitro metabolic parameters. Hesperidin was predicted to mainly occur in the systemic circulation as different monoglucuronides. The plasma concentrations of hesperidin aglycone (hesperetin) was predicted to be <0.02 mg/L at an oral dose of 50 mg/kg bw. The developed PBK model allowed conversion of in vitro concentration-response curves for different effects to in vivo dose-response curves. The BMD05 (benchmark dose for 5% response) values for protein kinase A inhibition ranged between 135 and 529 mg/kg bw hesperidin, and for inhibition of endothelial cell migration and prostaglandin E2 and nitric oxide production ranged between 2.19 and 44 mg/kg bw hesperidin. These values are in line with reported human data showing in vivo effects by hesperidin and show that these effects may occur at Western dietary and supplementary intake of hesperidin. Conclusions: The developed PBK model adequately predicts absorption, distribution, metabolism, and excretion of hesperidin in humans and allows to evaluate the human in vivo situation without the need for human intervention studies

    Physiologically based kinetic modelling based prediction of in vivo rat and human acetylcholinesterase (AChE) inhibition upon exposure to diazinon

    No full text
    The present study predicts in vivo human and rat red blood cell (RBC) acetylcholinesterase (AChE) inhibition upon diazinon (DZN) exposure using physiological based kinetic (PBK) modelling-facilitated reverse dosimetry. Due to the fact that both DZN and its oxon metabolite diazoxon (DZO) can inhibit AChE, a toxic equivalency factor (TEF) was included in the PBK model to combine the effect of DZN and DZO when predicting in vivo AChE inhibition. The PBK models were defined based on kinetic constants derived from in vitro incubations with liver fractions or plasma of rat and human, and were used to translate in vitro concentrationā€“response curves for AChE inhibition obtained in the current study to predicted in vivo doseā€“response curves. The predicted doseā€“response curves for rat matched available in vivo data on AChE inhibition, and the benchmark dose lower confidence limits for 10% inhibition (BMDL10 values) were in line with the reported BMDL10 values. Humans were predicted to be 6-fold more sensitive than rats in terms of AChE inhibition, mainly because of inter-species differences in toxicokinetics. It is concluded that the TEF-coded DZN PBK model combined with quantitative in vitro to in vivo extrapolation (QIVIVE) provides an adequate approach to predict RBC AChE inhibition upon acute oral DZN exposure, and can provide an alternative testing strategy for derivation of a point of departure (POD) in risk assessment.</p

    Use of Physiologically Based Kinetic Modeling to Predict Rat Gut Microbial Metabolism of the Isoflavone Daidzein to S-Equol and Its Consequences for ERĪ± Activation

    No full text
    Scope: To predict gut microbial metabolism of xenobiotics and the resulting plasma concentrations of metabolites formed, an in vitroā€“in silico-based testing strategy is developed using the isoflavone daidzein and its gut microbial metabolite S-equol as model compounds. Methods and results: Anaerobic rat fecal incubations are optimized and performed to derive the apparent maximum velocities (Vmax) and Michaelisā€“Menten constants (Km) for gut microbial conversion of daidzein to dihydrodaidzein, S-equol, and O-desmethylangolensin, which are input as parameters for a physiologically based kinetic (PBK) model. The inclusion of gut microbiota in the PBK model allows prediction of S-equol concentrations and slightly reduced predicted maximal daidzein concentrations from 2.19 to 2.16 Āµm. The resulting predicted concentrations of daidzein and S-equol are comparable to in vivo concentrations reported. Conclusion: The optimized in vitro approach to quantify kinetics for gut microbial conversions, and the newly developed PBK model for rats that includes gut microbial metabolism, provide a unique tool to predict the in vivo consequences of daidzein microbial metabolism for systemic exposure of the host to daidzein and its metabolite S-equol. The predictions reveal a dominant role for daidzein in ERĪ±-mediated estrogenicity despite the higher estrogenic potency of its microbial metabolite S-equol.</p

    Study on inter-ethnic human differences in bioactivation and detoxification of estragole using physiologically based kinetic modeling

    Get PDF
    Considering the rapid developments in food safety in the past decade in China, it is of importance to obtain insight into what extent safety and risk assessments of chemicals performed for the Caucasian population apply to the Chinese population. The aim of the present study was to determine physiologically based kinetic (PBK) modeling-based predictions for differences between Chinese and Caucasians in terms of metabolic bioactivation and detoxification of the food-borne genotoxic carcinogen estragole. The PBK models were defined based on kinetic constants for hepatic metabolism derived from in vitro incubations using liver fractions of the two ethnic groups, and used to evaluate the inter-ethnic differences in metabolic activation and detoxification of estragole. The models predicted that at realistic dietary intake levels, only 0.02% of the dose was converted to the ultimate carcinogenic metabolite 1ā€²-sulfooxyestragole in Chinese subjects, whereas this amounted to 0.09% of the dose in Caucasian subjects. Detoxification of 1ā€²-hydroxyestragole, mainly via conversion to 1ā€²-oxoestragole, was similar within the two ethnic groups. The 4.5-fold variation in formation of the ultimate carcinogenic metabolite of estragole accompanied by similar rates of detoxification may indicate a lower risk of estragole for the Chinese population at similar levels of exposure. The study provides a proof of principle for how PBK modeling can identify differences in ethnic sensitivity and provide a more refined risk assessment for a specific ethnic group for a compound of concern

    Development of a combined in Vitro Physiologically Based Kinetic (PBK) and Monte Carlo modelling approach to predict interindividual human variation in phenol-induced developmental toxicity

    No full text
    With our recently developed in vitro physiologically based kinetic (PBK) modelling approach, we could extrapolate in vitro toxicity data to human toxicity values applying PBK-based reverse dosimetry. Ideally information on kinetic differences among human individuals within a population should be considered. In the present study, we demonstrated a modelling approach that integrated in vitro toxicity data, PBK modelling and Monte Carlo simulations to obtain insight in interindividual human kinetic variation and derive chemical specific adjustment factors (CSAFs) for phenol-induced developmental toxicity. The present study revealed that UGT1A6 is the primary enzyme responsible for the glucuronidation of phenol in humans followed by UGT1A9. Monte Carlo simulations were performed taking into account interindividual variation in glucuronidation by these specific UGTs and in the oral absorption coefficient. Linking Monte Carlo simulations with PBK modelling, population variability in the maximum plasma concentration of phenol for the human population could be predicted. This approach provided a CSAF for interindividual variation of 2.0 which covers the 99th percentile of the population, which is lower than the default safety factor of 3.16 for interindividual human kinetic differences. Dividing the dose-response curve data obtained with in vitro PBK-based reverse dosimetry, with the CSAF provided a dose-response curve that reflects the consequences of the interindividual variability in phenol kinetics for the developmental toxicity of phenol. The strength of the presented approach is that it provides insight in the effect of interindividual variation in kinetics for phenol-induced developmental toxicity, based on only in vitro and in silico testing.</p

    Induction of peroxisome proliferator activated receptor Ī³ (PPARĪ³) mediated gene expression and inhibition of induced nitric oxide production by Maerua subcordata (Gilg) DeWolf

    No full text
    Background: The health benefits of botanicals is linked to their phytochemicals that often exert pleiotropic effects via targeting multiple molecular signaling pathways such as the peroxisome proliferator-activated receptors (PPARs) and the nuclear factor kappaB (NFĪŗB). The PPARs are transcription factors that control metabolic homeostasis and inflammation while the NF-ĪŗB is a master regulator of inflammatory genes such as the inducible nitric-oxide synthase that result in nitric oxide (NO) overproduction.Methods: Extracts of Maerua subcordata (MS) and selected candidate constituents thereof, identified by liquid chromatography coupled to mass spectroscopy, were tested for their ability to induce PPARĪ³ mediated gene expression in U2OS-PPARĪ³ cells using luciferase reporter gene assay and also for their ability to inhibit lipopolysaccharide (LPS) induced NO production in RAW264.7 macrophages. While measuring the effect of test samples on PPARĪ³ mediated gene expression, a counter assay that used U2OS-Cytotox cells was performed to monitor cytotoxicity or any non-specific changes in luciferase activity.Results: The results revealed that the fruit, root, and seed extracts were non-cytotoxic up to a concentration of 30ā€‰g dry weight per litre (gDW/L) and induced PPARĪ³ mediated gene expression but the leaf extract showed some cytotoxicity and exhibited minimal induction. Instead, all extracts showed concentration (1ā€“15 gDW/L) dependent inhibition of LPS induced NO production. The root extract showed weaker inhibition. Among the candidate constituents, agmatine, stachydrine, trigonelline, indole-3-carboxyaldehyde, plus ethyl-, isobutyl-, isopropyl, and methyl-isothiocyanates showed similar inhibition, and most showed increased inhibition with increasing concentration (1ā€“100ā€‰Ī¼M) although to a lesser potency than the positive control, aminoguanidine.Conclusion: The present study demonstrated for the first time the induction of PPARĪ³ mediated gene expression by MS fruit, root, and seed extracts and the inhibition of LPS induced NO production by MS fruit, leaf, root, and seed extracts and some candidate constituents thereof
    corecore