4,962 research outputs found

    Dzyaloshinsky-Moriya interaction in vesignieite: A route to freezing in a quantum kagome antiferromagnet

    Full text link
    We report an electron spin resonance investigation of the geometrically frustrated spin-1/2 kagome antiferromagnet vesignieite, BaCu3_3V2_2O8_8(OH)2_2. Analysis of the line widths and line shifts indicates the dominance of in-plane Dzyaloshinsky-Moriya anisotropy that is proposed to suppress strongly quantum spin fluctuations and thus to promote long-range ordering rather than a spin-liquid state. We also evidence an enhanced spin-phonon contribution that might originate from a lattice instability and discuss the origin of a low-temperature mismatch between intrinsic and bulk susceptibility in terms of local inhomogeneity

    17O NMR study of the intrinsic magnetic susceptibility and spin dynamics of the quantum kagome antiferromagnet ZnCu3(OH)6Cl2

    Get PDF
    We report through 17O NMR, an unambiguous local determination of the intrinsic kagome lattice spin susceptibility as well as that created around non-magnetic defects issued from natural Zn/ Cu exchange in the S=1/2 (Cu2+) herbertsmithite ZnCu3(OH)6Cl2 compound. The issue of a singlet-triplet gap is addressed. The magnetic response around a defect is found to markedly differ from that observed in non-frustrated antiferromagnetic materials. Finally, we discuss our relaxation measurements in the light of Cu and Cl NMR data [cond-mat 070314] and suggest a flat q-dependence of the excitations.Comment: Accepted for publication in Phys. Rev. Lett., 3 jan. 2008 Figure 1 has been modified to include a two-components fit of the 17O NMR spectru

    Farmer's elevators of Ohio: fifteen years, 1928 to 1943

    Get PDF

    Anomalous direction for skyrmion bubble motion

    Get PDF
    Magnetic skyrmions are localized topological excitations that behave as particles and can be mobile, with great potential for novel data storage devices. In this work, the current-induced dynamics of large skyrmion bubbles is studied. When skyrmion motion in the direction opposite to the electron flow is observed, this is usually interpreted as a perpendicular spin current generated by the spin Hall effect exerting a torque on the chiral N\'{e}el skyrmion. By designing samples in which the direction of the net generated spin current can be carefully controlled, we surprisingly show that skyrmion motion is always against the electron flow, irrespective of the net vertical spin-current direction. We find that a negative bulk spin-transfer torque is the most plausible explanation for the observed results, which is qualitatively justified by a simple model that captures the essential behaviour. These findings demonstrate that claims about the skyrmion chirality based on their current-induced motion should be taken with great caution

    Normal-Superfluid Interface Scattering For Polarized Fermion Gases

    Full text link
    We argue that, for the recent experiments with imbalanced fermion gases, a temperature difference may occur between the normal (N) and the gapped superfluid (SF) phase. Using the mean-field formalism, we study particle scattering off the N-SF interface from the deep BCS to the unitary regime. We show that the thermal conductivity across the interface drops exponentially fast with increasing h/kBTh/k_B T, where hh is the chemical potential imbalance. This implies a blocking of thermal equilibration between the N and the SF phase. We also provide a possible mechanism for the creation of gap oscillations (FFLO-like states) as seen in recent studies on these systems.Comment: 4 pages, 3 figure

    Optimizing propagating spin wave spectroscopy

    Get PDF
    The frequency difference between two oppositely propagating spin waves can be used to probe several interesting magnetic properties, such as the Dzyaloshinkii-Moriya interaction (DMI). Propagating spin wave spectroscopy is a technique that is very sensitive to this frequency difference. Here we show several elements that are important to optimize devices for such a measurement. We demonstrate that for wide magnetic strips there is a need for de-embedding. Additionally, for these wide strips there is a large parasitic antenna-antenna coupling that obfuscates any spin wave transmission signal, which is remedied by moving to smaller strips. The conventional antenna design excites spin waves with two different wave vectors. As the magnetic layers become thinner, the resulting resonances move closer together and become very difficult to disentangle. In the last part we therefore propose and verify a new antenna design that excites spin waves with only one wave vector. We suggest to use this antenna design to measure the DMI in thin magnetic layers.Comment: 12 pages, 4 figure
    • …
    corecore