279 research outputs found

    Solar Neutrino Constraints on the BBN Production of Li

    Full text link
    Using the recent WMAP determination of the baryon-to-photon ratio, 10^{10} \eta = 6.14 to within a few percent, big bang nucleosynthesis (BBN) calculations can make relatively accurate predictions of the abundances of the light element isotopes which can be tested against observational abundance determinations. At this value of \eta, the Li7 abundance is predicted to be significantly higher than that observed in low metallicity halo dwarf stars. Among the possible resolutions to this discrepancy are 1) Li7 depletion in the atmosphere of stars; 2) systematic errors originating from the choice of stellar parameters - most notably the surface temperature; and 3) systematic errors in the nuclear cross sections used in the nucleosynthesis calculations. Here, we explore the last possibility, and focus on possible systematic errors in the He3(\alpha,\gamma)Be7 reaction, which is the only important Li7 production channel in BBN. The absolute value of the cross section for this key reaction is known relatively poorly both experimentally and theoretically. The agreement between the standard solar model and solar neutrino data thus provides additional constraints on variations in the cross section (S_{34}). Using the standard solar model of Bahcall, and recent solar neutrino data, we can exclude systematic S_{34} variations of the magnitude needed to resolve the BBN Li7 problem at > 95% CL. Additional laboratory data on He3(\alpha,\gamma)Be7 will sharpen our understanding of both BBN and solar neutrinos, particularly if care is taken in determining the absolute cross section and its uncertainties. Nevertheless, it already seems that this ``nuclear fix'' to the Li7 BBN problem is unlikely; other possible solutions are briefly discussed.Comment: 21 pages, 3 ps figure

    Identification of a Novel Binding Partner of Phospholipase Cβ1: Translin-Associated Factor X

    Get PDF
    Mammalian phospholipase Cβ1 (PLCβ1) is activated by the ubiquitous Gαq family of G proteins on the surface of the inner leaflet of plasma membrane where it catalyzes the hydrolysis of phosphatidylinositol 4,5 bisphosphate. In general, PLCβ1 is mainly localized on the cytosolic plasma membrane surface, although a substantial fraction is also found in the cytosol and, under some conditions, in the nucleus. The factors that localize PLCβ1in these other compartments are unknown. Here, we identified a novel binding partner, translin-associated factor X (TRAX). TRAX is a cytosolic protein that can transit into the nucleus. In purified form, PLCβ1 binds strongly to TRAX with an affinity that is only ten-fold weaker than its affinity for its functional partner, Gαq. In solution, TRAX has little effect on the membrane association or the catalytic activity of PLCβ1. However, TRAX directly competes with Gαq for PLCβ1 binding, and excess TRAX reverses Gαq activation of PLCβ1. In C6 glia cells, endogenous PLCβ1 and TRAX colocalize in the cytosol and the nucleus, but not on the plasma membrane where TRAX is absent. In Neuro2A cells expressing enhanced yellow and cyano fluorescent proteins (i.e., eYFP- PLCβ1 and eCFP-TRAX), Förster resonance energy transfer (FRET) is observed mostly in the cytosol and a small amount is seen in the nucleus. FRET does not occur at the plasma membrane where TRAX is not found. Our studies show that TRAX, localized in the cytosol and nucleus, competes with plasma-membrane bound Gαq for PLCβ1 binding thus stabilizing PLCβ1 in other cellular compartments

    G Protein Activation without a GEF in the Plant Kingdom

    Get PDF
    Animal heterotrimeric G proteins are activated by guanine nucleotide exchange factors (GEF), typically seven transmembrane receptors that trigger GDP release and subsequent GTP binding. In contrast, the Arabidopsis thaliana G protein (AtGPA1) rapidly activates itself without a GEF and is instead regulated by a seven transmembrane Regulator of G protein Signaling (7TM-RGS) protein that promotes GTP hydrolysis to reset the inactive (GDP-bound) state. It is not known if this unusual activation is a major and constraining part of the evolutionary history of G signaling in eukaryotes. In particular, it is not known if this is an ancestral form or if this mechanism is maintained, and therefore constrained, within the plant kingdom. To determine if this mode of signal regulation is conserved throughout the plant kingdom, we analyzed available plant genomes for G protein signaling components, and we purified individually the plant components encoded in an informative set of plant genomes in order to determine their activation properties in vitro. While the subunits of the heterotrimeric G protein complex are encoded in vascular plant genomes, the 7TM-RGS genes were lost in all investigated grasses. Despite the absence of a Gα-inactivating protein in grasses, all vascular plant Gα proteins examined rapidly released GDP without a receptor and slowly hydrolyzed GTP, indicating that these Gα are self-activating. We showed further that a single amino acid substitution found naturally in grass Gα proteins reduced the Gα-RGS interaction, and this amino acid substitution occurred before the loss of the RGS gene in the grass lineage. Like grasses, non-vascular plants also appear to lack RGS proteins. However, unlike grasses, one representative non-vascular plant Gα showed rapid GTP hydrolysis, likely compensating for the loss of the RGS gene. Our findings, the loss of a regulatory gene and the retention of the “self-activating” trait, indicate the existence of divergent Gα regulatory mechanisms in the plant kingdom. In the grasses, purifying selection on the regulatory gene was lost after the physical decoupling of the RGS protein and its cognate Gα partner. More broadly these findings show extreme divergence in Gα activation and regulation that played a critical role in the evolution of G protein signaling pathways

    Political leadership and the politics of performance:France, Syria and the chemical weapons crisis of 2013

    Get PDF
    This article draws upon developments in UK research on political rhetoric and political performance in order to examine the incident in 2013 when French President François Hollande committed French forces to a US-led punitive strike against Syria, after the use of chemical weapons in a Damascus suburb on 21 August. The US-led retaliation did not take place. This article analyses Hollande's declaration on 27 July and his TV appearance on 15 September. His rhetoric and style are best understood as generic to the nature of the presidential office of the Fifth Republic. The article concludes by appraising how analysis of the French case contributes to the developing literature on rhetoric, celebrity and performance

    Leadership and style in the French Fifth Republic:Nicolas Sarkozy’s presidency in historical and cultural perspective

    Get PDF
    This article contributes to the body of the developing theoretical research in leadership and presidential studies by adding analysis of what I have termed ‘comportmental style’ as a factor in leader/follower relations. Within institutionalism and the wider structure/agency debate in political science, one of the challenges as regards the study of leadership is to identify factors that offer scope to or else militate against leaders’ performance. The comportmental style of Nicolas Sarkozy (President of the French Republic 2007–2012), deployed in the context of the – changing – institution of the presidency, was a major factor in his extreme unpopularity, and contributed to his defeat in 2012. What this tells us about the nature of the changing French presidency and the role of style will be discussed in the conclusion

    Real-time visualization of heterotrimeric G protein Gq activation in living cells

    Get PDF
    Contains fulltext : 97296.pdf (publisher's version ) (Open Access)BACKGROUND: Gq is a heterotrimeric G protein that plays an important role in numerous physiological processes. To delineate the molecular mechanisms and kinetics of signalling through this protein, its activation should be measurable in single living cells. Recently, fluorescence resonance energy transfer (FRET) sensors have been developed for this purpose. RESULTS: In this paper, we describe the development of an improved FRET-based Gq activity sensor that consists of a yellow fluorescent protein (YFP)-tagged Ggamma2 subunit and a Galphaq subunit with an inserted monomeric Turquoise (mTurquoise), the best cyan fluorescent protein variant currently available. This sensor enabled us to determine, for the first time, the kon (2/s) of Gq activation. In addition, we found that the guanine nucleotide exchange factor p63RhoGEF has a profound effect on the number of Gq proteins that become active upon stimulation of endogenous histamine H1 receptors. The sensor was also used to measure ligand-independent activation of the histamine H1 receptor (H1R) upon addition of a hypotonic stimulus. CONCLUSIONS: Our observations reveal that the application of a truncated mTurquoise as donor and a YFP-tagged Ggamma2 as acceptor in FRET-based Gq activity sensors substantially improves their dynamic range. This optimization enables the real-time single cell quantification of Gq signalling dynamics, the influence of accessory proteins and allows future drug screening applications by virtue of its sensitivity
    corecore