27,850 research outputs found

    Statistical Properties of Many Particle Eigenfunctions

    Full text link
    Wavefunction correlations and density matrices for few or many particles are derived from the properties of semiclassical energy Green functions. Universal features of fixed energy (microcanonical) random wavefunction correlation functions appear which reflect the emergence of the canonical ensemble as the number of particles approaches infinity. This arises through a little known asymptotic limit of Bessel functions. Constraints due to symmetries, boundaries, and collisions between particles can be included.Comment: 13 pages, 4 figure

    Nonperiodic Orbit Sums in Weyl's Expansion for Billiards

    Get PDF
    Weyl's expansion for the asymptotic mode density of billiards consists of the area, length, curvature and corner terms. The area term has been associated with the so-called zero-length orbits. Here closed nonperiodic paths corresponding to the length and corner terms are constructed.Comment: 8 pages, 2 figure

    Aerothermal modeling program, phase 1

    Get PDF
    Aerothermal submodels used in analytical combustor models are analyzed. The models described include turbulence and scalar transport, gaseous full combustion, spray evaporation/combustion, soot formation and oxidation, and radiation. The computational scheme is discussed in relation to boundary conditions and convergence criteria. Also presented is the data base for benchmark quality test cases and an analysis of simple flows

    Geometric phases and anholonomy for a class of chaotic classical systems

    Full text link
    Berry's phase may be viewed as arising from the parallel transport of a quantal state around a loop in parameter space. In this Letter, the classical limit of this transport is obtained for a particular class of chaotic systems. It is shown that this ``classical parallel transport'' is anholonomic --- transport around a closed curve in parameter space does not bring a point in phase space back to itself --- and is intimately related to the Robbins-Berry classical two-form.Comment: Revtex, 11 pages, no figures

    Dynamical diffraction in sinusoidal potentials: uniform approximations for Mathieu functions

    Get PDF
    Eigenvalues and eigenfunctions of Mathieu's equation are found in the short wavelength limit using a uniform approximation (method of comparison with a `known' equation having the same classical turning point structure) applied in Fourier space. The uniform approximation used here relies upon the fact that by passing into Fourier space the Mathieu equation can be mapped onto the simpler problem of a double well potential. The resulting eigenfunctions (Bloch waves), which are uniformly valid for all angles, are then used to describe the semiclassical scattering of waves by potentials varying sinusoidally in one direction. In such situations, for instance in the diffraction of atoms by gratings made of light, it is common to make the Raman-Nath approximation which ignores the motion of the atoms inside the grating. When using the eigenfunctions no such approximation is made so that the dynamical diffraction regime (long interaction time) can be explored.Comment: 36 pages, 16 figures. This updated version includes important references to existing work on uniform approximations, such as Olver's method applied to the modified Mathieu equation. It is emphasised that the paper presented here pertains to Fourier space uniform approximation

    A simple and surprisingly accurate approach to the chemical bond obtained from dimensional scaling

    Get PDF
    We present a new dimensional scaling transformation of the Schrodinger equation for the two electron bond. This yields, for the first time, a good description of the two electron bond via D-scaling. There also emerges, in the large-D limit, an intuitively appealing semiclassical picture, akin to a molecular model proposed by Niels Bohr in 1913. In this limit, the electrons are confined to specific orbits in the scaled space, yet the uncertainty principle is maintained because the scaling leaves invariant the position-momentum commutator. A first-order perturbation correction, proportional to 1/D, substantially improves the agreement with the exact ground state potential energy curve. The present treatment is very simple mathematically, yet provides a strikingly accurate description of the potential energy curves for the lowest singlet, triplet and excited states of H_2. We find the modified D-scaling method also gives good results for other molecules. It can be combined advantageously with Hartree-Fock and other conventional methods.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Letter

    Civil tiltrotor missions and applications. Phase 2: The commercial passenger market

    Get PDF
    The commercial passenger market for the civil tiltrotor was examined in phase 2. A market responsive commercial tiltrotor was found to be technically feasible, and a significant worldwide market potential was found to exist for such an aircraft, especially for relieving congestion in urban area-to-urban area service and for providing cost effective hub airport feeder service. Potential technical obstacles of community noise, vertiport area navigation, surveillance, and control, and the pilot/aircraft interface were determined to be surmountable. Nontechnical obstacles relating to national commitment and leadership and development of ground and air infrastructure were determined to be more difficult to resolve; an innovative public/private partnership is suggested to allow coordinated development of an initial commercial tiltrotor network to relieve congestion in the crowded US Northeast corridor by the year 2000

    Quantum Charged Spinning Particles in a Strong Magnetic Field (a Quantal Guiding Center Theory)

    Get PDF
    A quantal guiding center theory allowing to systematically study the separation of the different time scale behaviours of a quantum charged spinning particle moving in an external inhomogeneous magnetic filed is presented. A suitable set of operators adapting to the canonical structure of the problem and generalizing the kinematical momenta and guiding center operators of a particle coupled to a homogenous magnetic filed is constructed. The Pauli Hamiltonian rewrites in this way as a power series in the magnetic length lB=â„Źc/eBl_B= \sqrt{\hbar c/eB} making the problem amenable to a perturbative analysis. The first two terms of the series are explicitly constructed. The effective adiabatic dynamics turns to be in coupling with a gauge filed and a scalar potential. The mechanism producing such magnetic-induced geometric-magnetism is investigated in some detail.Comment: LaTeX (epsfig macros), 27 pages, 2 figures include

    Geometric phases and hidden local gauge symmetry

    Full text link
    The analysis of geometric phases associated with level crossing is reduced to the familiar diagonalization of the Hamiltonian in the second quantized formulation. A hidden local gauge symmetry, which is associated with the arbitrariness of the phase choice of a complete orthonormal basis set, becomes explicit in this formulation (in particular, in the adiabatic approximation) and specifies physical observables. The choice of a basis set which specifies the coordinate in the functional space is arbitrary in the second quantization, and a sub-class of coordinate transformations, which keeps the form of the action invariant, is recognized as the gauge symmetry. We discuss the implications of this hidden local gauge symmetry in detail by analyzing geometric phases for cyclic and noncyclic evolutions. It is shown that the hidden local symmetry provides a basic concept alternative to the notion of holonomy to analyze geometric phases and that the analysis based on the hidden local gauge symmetry leads to results consistent with the general prescription of Pancharatnam. We however note an important difference between the geometric phases for cyclic and noncyclic evolutions. We also explain a basic difference between our hidden local gauge symmetry and a gauge symmetry (or equivalence class) used by Aharonov and Anandan in their definition of generalized geometric phases.Comment: 25 pages, 1 figure. Some typos have been corrected. To be published in Phys. Rev.

    Topological properties of Berry's phase

    Full text link
    By using a second quantized formulation of level crossing, which does not assume adiabatic approximation, a convenient formula for geometric terms including off-diagonal terms is derived. The analysis of geometric phases is reduced to a simple diagonalization of the Hamiltonian in the present formulation. If one diagonalizes the geometric terms in the infinitesimal neighborhood of level crossing, the geometric phases become trivial for any finite time interval TT. The topological interpretation of Berry's phase such as the topological proof of phase-change rule thus fails in the practical Born-Oppenheimer approximation, where a large but finite ratio of two time scales is involved.Comment: 9 pages. A new reference was added, and the abstract and the presentation in the body of the paper have been expanded and made more precis
    • …
    corecore