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SECTION I

1.0 SUMMARY

The main objective of the NASA-sponsored Aerothermal Modeling

Program, Phase I was to assess current aerothermal submodels used
in the Garrett Turbine Engine Company (GTEC) analytical combustor
models.

# number of "benchmark" quality test cases were selected
after an extensive literature survey. The selected test cases,
both nonreacting and reacting flows, were broadly divided into the
following categories:

Simple flows
Complex nonswirling £lows
Swirling flows

O 0 0 ©

Dilution jet mixing in confined crossflows.

These test cases were used to assess the following submodels
separately and jointly for various combustion processes:

o k-¢ model of turbulence and algebraic stress model, with
and without various corrections including low Reynolds

number and Richardson number corrections

o Scalar transport models

o Multistep kinetic schemes
o Turbulence/chemistry interaction
o Spray combustitii.
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The following general conclusions were derived from Phase I
work.

| e S W BT S

o An accurate numerical scheme should be developed to mini-

mize numerical diffusion in the computations of recircu-
lating flows

T

o Benchmark quality data should be generated under well-
defined environments £for validating the various sub-
models used in gas turbine combustion analysis.

Tty i

o Although current aerothermal models make r«asonable pre-
dictions, intensive model development and validation
effort should continue for the following sdbmodels:

T T

- Algebraic stress model
- Algebraic scalar transport model

- Two-step and four-step schemes it

Probability density function approach for a two-
step scheme

- Double-reaction zone model.
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SECTION II
2,0 INTRODUCTION

The objectives of the NASA Aerothermal Modeling Program are to
assess the current state-of-the-art and identify the deficiencies
in current aerothermal models for gas turbine combustors. The pro-
gram involves the following tasks:

Task 1.1 - Model Definition

Task 1.2 - Data Base Generation

Task 1.3 - Benchmark Test Case Definition
Task 2.1 - Model Execution

Task 2.2 - Model Assessment

Task 2.3 - Program Plan for Model Improvement.

Paragraph 2.1 gives a brief background of aerothermal model-
ing followed by a description of the Garrett empirical/analytical
combustor design approach in Paragraph 2.2. This design approach
is based on the use of a number of interrelated multidimensional
analytical models that contain appropriate submodels (modules) of
turbulence, chemistry, spray combustion/evaporation, soot, and
high pressure radiation. These modules are described in Section
3.0. A description of the numerical schemes employed are provided
in Section 4.0, and a survey of relevant literature is presented in
Section 5.0,

The model assessment results are presented in four different

sections:
o Section 6.0 - Results for simple flows, with and without
combustion
o Section 7.0 -,Results for complex nonswirling flows

a o
.
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o Section 8.0 ~ Evaluation of the models for swirling flows

o Section 9.0 - Three-dimensional (3-D) dilution jet-
mixing validation results

{

Section 10.0 presents the conclusions and the recommendations for

~model improvements.

2.1 Aerothermal Modeling Background

Substantial increases in gas turbine performance have been
achieved in recent years due largely to the use of advanced tech-
nologies in components and material, in addition to operation at
higher cycle pressures and temperatures. To meet the trend toward
higher pressure ratio gas turbines with increased turbine inlet
temperatures, increased research and develcpment efforts have been
directed toward the combustion system. These efforts have contri-
buted largely toward gaining a better understanding of the overall
combustion process and have led to the development of an advanced
combustor design methodology based on a combination of empirical
and analytical techniques. The challenging demands placed upon the
combustion system due to increased performance and life require-
ments, as well as the need to reduce combustor design and develop-
ment cost, have provided the primary motivation for using multi-
dimensional combustion analysis procedures. The advanced combus-
tion analysis forms thefbasis for the design and development pro-

cedures of advanced techhology combustors at Garrett Turbine Engine
1-10

To provide greater confidence in the design of high-perform-
ance, durable combustors for advanced aircraft turbine engines, a
thorough understanding and accurate characterization of the various

physical phenomena involved is required. Over the years, Garrett

has been actively involved  in the assessment, validation, and

4
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updating of combustor aerothermal models in the areas of multidi~
mensional flow effects, effects of turbulence scale and intensity,
combustion kinetics, fuel spray and flow field interactions, soot
formation, and high-pressure flame radiation characteristics.
Garrett has continued to assess every submodel within each model

against fundamental data from ideal element tests.10-14

Concur-
rently, model accuracy has been indirectly assessed by comparing
predictions with measurements on a number of production and ad-

vanced combusst:ox:s.l"9

Through: an integrated effort of assessing
both the models and the submodels, it has been possible to con-
tinually improve the accuracy and reliability of the empirical/

analytical design procedure described in the following paragraph.




2.2 Garrett Empirical/Analytical Combustor Desiqgn Approach

Past approaches to the design and development of gas turbine
combustion systems have largely involved the application of funda-
mental knowledge of turbulent reacting flows on an empirical basis,
followed by component testing to achieve optimum performance objec~-
tives. A number of semiempirical relationships have been developed
through the vears to provide guidelines for the initial design of a
new combustion system and to predict attainable performance on the
basis of experience curves. Such an approach has been quite suc~
cessful in the design and development of combustor configurations
that are derived from proven concepts.

The development of an empirical data base for combustors is
evolutionary. Its limitations, regarding the development of
advanced combustion systems with requirements outside of experience
bounds, became apparent to Garrett in the early 1970's. The inade~-
quacy of the empirical approach in solving combustion development
problems relating to gaseous and particulate emissions; carbon for-
mation; and, more recently, liner and nozzle structural durability
for high-temperature-rise applications required complementing this
approach with advanced analytical methods.

Garrett has developed a number of analytical models that form
the basis for the design and development of advanced technology
combustors. The internal flow field of modern gas turbine combus-
tors is a highly complex 3-D phenomenon involving regions of
reverse-flow. In addition, the various combustor regions require
varying degrees of field resolution to predict accurately the con-
vective and radiative fluxes. A modular approach, therefore, has
been developed at Garrett allowing use of different computer
models, as depicted in Figure 2.2-1. | |
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ORIGINAL PAGE IS
OF POOR QUALITY

ANNULUS FLOW MODEL, AFM

COMBUSTOR PERFORMANCE MODEL, CPM

SOLVES FOR THE PRESSURE LOSSES
AND AIRFLOW DISTRIBUTION WITHIN
THE ANNULUS EXTERNAL TO THE
COMBUSTOR. PREDICTS THE REQUIRED
ORIFICE PATTERN FOR THE DESIRED
FLOW SPLITS AND THE BOUNDARY
CONDITIONS FOR THE COMBUSTOR
PERFORMANCE MODEL.

SOLVES THE GOVERNING REACTING

FLUID DYNAMIC AND CHEMICAL REACTION
EQUATIONS FOR THE ENTIRE COMBUSTOR.
PREDICTS THE COMBUSTOR-FLOW FIELD
INCLUDING VELOCITIES, TEMPERATURE, AND
LOCAL FUEL-AIR RATIO AS WELL AS SMOKE
AND SPECIES CONCENTRATION.

TRANSITION MIXING MODEL, TMM

NEAR WALL MODEL, NWM

SOLVES THE GOVERNING REACTING
FLUID DYNAMIC AND CHEMICAL
REACTION EQUATIONS IN THE

180° TRANSITION LINER BEND

PREDICTS THE TEMPERATURE
QUALITY AT THE FIRST-STAGE
TURBINE INLET.

SOLVES THE GOVERNING FLUID DYNAMIC

AND HEAT FLUX EQUATIONS ADJACENT T
THE LINER WALLS USING A HIGH-RESOLUTION
GRID. PREDICTS LINER HEAT TRANSFER
RATES AND ATTENDANT WALL TEMPERATURES.

Figure 2.2-1 Combustor Models and Region of Application.



An annulus flow model is used to calculate pressure losses and
airflow distribution within the annulus external to the combustor
liner. This model calculates boundary conditions, such as flow
distribution around the liner, jet velocity, and efflux angles,
which are required as inputs for the combustor internal flow
models.

Two-dimensional (2-D) and 3-D combustor performance models are
used to predict internal profiles of dependent variables including
velocity, species, and temperature by solving fully coupled trans-
port equations for turbulent, recirculating, spray-combusting flow
fields. Up to 20,000 finite-difference grid nodes are numerically
solved in these programs to ensure a relatively "grid-independent"
solution for the main flow field. However, for the region close to
the fiim-cooled wall, a better field resolution is required to
accurately predict the convective fluxes and the wall temperatures.
This is done by using near-wall modelz.

The reverse-flow annular combustors generally employ transi-~
tion liners where the main flow direction changes from axial to
radial for radial-inflow turbines or a full 18C~degree bend for
axial flow turbines. The flow field has only small pockets of
reverse-flow regions. Computationaliy more efficient 2-D and/or

- 3-D transition mixing models are used for calculating the mixing

rate of the cold dilution Jjets in the transition liner. These
models calculate the turbine stator inlet profiles of temperature,
velocity, and turbulence intensity, which are needed for assessing
turbine hardware life. The various analytical models are used in

" the overall combustor design to arrive at a final combustor design

in a timely and cost-effective manner.

The empirical/analytical combustor design approach is shown in
Figure 2.2-2. The engine requirements and design define the com-
bustor inlet conditions and limiting envelope constraints. Using

’
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ENGINE CYCLE | COMBUSTOR \NLET 8IZE ENGINE CONSTRAINTS ON
CONDITIONS I CONDITIONS 1 1 SHAPE | THE COMBUSTOR ENVELOPE

NO. OF FUEL NOZZLES PRELIMINARY COMBUSTOR ORIFICE PATTERN
ANNULUS FLOW AREA EMPIRICAL DESIGN COMBUSTOR GEOMETRY

MODIFY COMBUSTOR roﬁ COMBUSTOR GEOMETRY
BETTER * RFORMANCE AND INLET CONDITIONS ‘

ANNULUS FLOW MODEL

COMBUSTOR FLOW sPLIT |

COMBUSTOR PERFORMANCE || HOT SIDE BOUNDARY c.:‘i&o‘:&‘v
MODEL CONDITIONS CONDITIONS
COMBUSTOR DISCHARGE
FLOW FIELD B
COMBUSTOR
TRANSITION MIXING PERFORMANCE NEAR WALL
MODEL MODEL
REVERSE FLOW COMBUSTOR WALL TEMPERATURE
PATTERN FACTOR } Y { AND LINER LIFE
ANALYTICALLY
DESIGNED
COMBUSTOR
RRELAYE WITH
- FABRICATE UNACCEPTABLE . MODEL
NAL - —ry-—paa =
AND TEST RESULTS MODIFY COMBUSTOR

COMBUSTOR

TEST RETEST
RESULTS

ACCEPTABLE
RESULTS

Figure 2.2-2. Coubustor Design Methodology.



existing empirical design relations, a baseline combustor is
defined and includes the apprcpriate flow splits, number of fuel
nozzles, and orifice locations. The annulus flow model is then
used to determine the orifice sizes to obtain the desired overall
pressure drop, and flow splits needed to define the boundary con-
ditions for the combustor performance model.

The combustor performance model is run at various power condi-
tions to evaluate combustor internal flow characteristics. If the
design regquires changes, the baseline combustor is altered, the
annulus flow model is rerun, and the combustor performance model is
again used to evaluate the new design.

The combustor liner wall convective and radiative fluxes and
attendant temperature levels and gradients are calculated with the
near-wall model. The hot-side boundary conditions are defined by
the combustor performance model. The cold-side boundary conditions

- are defined by the annulus flow model. 'The combustor performance

model is also used to define initial conditions for the transition
mixing model, which is used to calculate the mixing in the transi-
tion liner and the resulting burner exit temperature quality.

The results from the combustor performance model, near-wall
model, and transition mixing model are factored into the analyti-
cally designed combustor. If the design is lacking, iterations are
peformed using the various models to arrive at an acceptable final
configuration.

The configuration is then fabricated and tested. If the
result is unacceptable, the test data is compared with the analy-

tical predictions and the appropriate subcomponent is modified,

reanalyzed, and retested to verify that the modifications corrected
the problems. This procedure is repeated until all the combustor
design goals are achieved. Experience shows that this design
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approach minimizes the number of changes required on actual hard-
ware to achieve the design objectives.
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SECTION III

3.0 Description of Analytical Models

Detailed descriptions of the combustor analytical models are
provided in Paragraph 3.1. Each analytical model contains several
submodels, which are described separately in Paragraphs 3.2 through
3.6.

3.1 The Analytical Models

The Garrett modular analytical approach uses the following
four models for analyzing gas turbine combustor flow field.

Annulus Flow Model (AFM)

Combustor Performance Model (CPM), 2-D and 3-D
Transition Mixing Model (TMM), 2~D and 3-D
Near-Wall Model (NWM)

0O 0 0 ©

These models use submodels of turbulence, kinetics, radiation,
and spray combustion/evaporation and dispersion as summarized in
Table 1.

3.1.1 Annulus Flow Model

The first task in analyzing any combustion system is to pre-
dict the annulus flow external to the combustor. For this, the AFM
is used. The combustor annulus is divided into a number of sec-

‘tions with the section boundaries defined by orifice rows in the

liner or points of significant area change. In each section, the
AFM solves the one~dimensional (1-D) equations for axial and tan-
gential velocity. Mass is extracted from the annulus flow at each
orifice row. The extracted mass is governed by the liner orifice
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TABLE 1. COMPUTER MODELS AND PHYSICAL SUBMODELS (MODULES).
SUBMODELS (MODULES)
INPUTS | OBTAINS
DIMEN- NUMERICAL TURBU- RADIA- INFO INFO
MODEL SIONS TYPE LENCE | KINETICS | TION SPRAY TO: FROM:
ANNULUS 1 - - - - - CPM -
FLOW
(AFM)
COMBUSTOR 2/3 | ELLIPTIC; K-¢ 2-STEP/ | &-FLUX/ | LAGHANGIAN | TMM AFM
PERFORMANCE ORTHOGONAL/ 4-STEP |6 FLUX AND/OR
(CPM) NONORTHOGONAL EULERIAN NWAS
TRANSITION 2/3 | PARABOLIC/ K-¢ 2.STEP | NONE/ NOWNE - CPM
MIXING ELLIPTIC; 6 FLUX
(TMM) NONORTHOGONAL
NEAR 1/ PARABOLIC/ K-¢ 2-STEP |2-FLUX NGNE - cPM
waLL 2/ ELLIPTIC
(NWM) 3
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geometry and semi-~analytical correlations for discharge coeffi-~
cient. Pressure loss, both frictional and dump types, and heat

- transfer are included in the calculations. Iteration on combustor
liner pressure drop continues until the total orifice flow rate
achieves the desired value. The AFM predicts the static pressure
distribution around the combustor, the liner pressure drop, orifice
flow splits, and injection angles and velocities. These values are
required as boundary conditions for the internal combustor flow
programs (CPM, TMM, and NWM).

3.1.2 Combustor Performance Model

The CPM has two versions: 2-D and 3-D.

2-D Combustor Performance Model

If the internal flow field of the combustor is predominantly
2-D plane flow or axisymmetic flow, a 2-D CPM is used to calculate
combuster internal flow field. The 2-D CPM is a generalized
finite-difference progiam that solves the conservative form of the
the governing fluid dynamic and chemical reaction equations, using
the numerical scheme of Patankar-Spalding.l5
ables are solved:

The following vari-

o Axial, radial, and tangential velocity
o Turbulent kinetic energy and dissipation
o  Total fuel, unburned fuel, and other chemical species

including carlon monoxide
o Pressure

o Stagnation enthalpy
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o Radiation
o Liquid particle droplet size, velocity, and evaporation
rate

Cylindrical or rectangular coordinates are used along with the
capability of specifying any arbitrary shape for the liner wall or
any arbitrary iriternal object such as a fuel nozzle shroud. Using
the flow rates and velocities, etc., from the AFM, cooling slots,
primary and dilution orifices, swirlers, and liquid or gaseous fuel
nozzles are all modeled simultaneously. This gives the overall
combustor flow field and the species and temperature distributions.
Bulk flow properties determined include recirculation zone size and
shape, primary and dilution jet penetration, and combustion effi-
ciency.

3—D Combustor Performance Model

In many situations, the combustor geometry is'nct 2-D. In
these cases, 3-D CPM must be used. The 3-D CPM is based on the
USARTL 3-D Model12 and can be considered an extension of the 2-D
CPM to three dimensions. Both models use the same numerical scheme
and the coordinate system. Like the 2-D CPM, the 3-D CPM solves for
similar variables and requires boundary condition input from the
AFM. Arbitrary complex boundaries and nozzle shrouds can be simu-
lated. The 3-D CPM can analyze such 3-D flow situations as single
(or multiple) swirlers in an annular combustor, tangential fuel
nozzles, and discrete primary and dilution jets.

3.1.3 Transition Mixing Model

The TMM has two versions: 2-D and 3-D.
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"developed that includes radiation and kinetic effects on the

2-D Transition Mixing Models

Though the'zwﬂ CPM and 3~D CPM can analyze arbitrary shapes,

féhey are limited to cylindrical or Cartesian cocrdinates. They

cannot economically calculate the flow in the transition liner used
in reverse-flow annular combustion systems. . For relatively long
combustors where the flow entering the transition liner is predom-
inantly 2-D, the 2-D transition mixing model (2-D TMM) is used.
This modei is based on the GENMIX program of Patankar and
Spaldingl6 . Modifications have been added that allow the program
to negotiate 180-degree bends with the source terms added to
account for the induced radial pressure gradients. Since it is a
parabolic numerical scheme, this model is limited to transition
liners in which the radii of curvature are large. Otherwise the
pressure effects would have to propagate upstream. As in the other
Garrett models, the two-equation k-¢ turbulence model is used along
with the 2-step reaction mechanism. For initial profiles, the 2-D
TMM uses the exit profiles as predicted by either the 2-D CPM or 3-D
CPM., It then generates the exit profiles from the transition liner
to which the turbine stator is exposed.

3~-D Transition Mixing Models

With curfént trends toward shorter turbo-propulsion combus-
tors and more compact transition liners, a significant amount of
dilution jet mixing and spreading takes place within the transition
liner. Attendant 3-D flow characteristics result from this mixing
and sprzading. Moreover, due to tight-bend radii of the transition
liner, upstream (elliptic) effects caused by streamline cur&ﬁture
cannot be ignored. ‘ |

A 3-D elliptic transition mixing model has therefore been

transition liner. This program is similar to the 3-D CPM, but
hés been structured to afford more than 2000 L finite-difference
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nodes, where L is the number of nodes along the predominant flow
direction. Theoretically, there is nc limit on L; however, due to
computer time consideration, L is gwierally kept less than 50. The
3-D TMM can be adouptd to analyze turbopropulsion combustors with
much more complex geometries that cannot be adequately discretized
by a cylindrical or Cartesian coordinate system,

3.1.4 Near-Wall Models

To accurately predict hot-side convective and radiative fluxes
to the liner wall, a 2-D parabolic film cooling analytical model
was developed during cthe Army Combustor Design Criteria Program.
Subsequently, an improved 2-D NWM has been deveioped to allow a

more accuu.ite assessment of the effects of the following on liner
cooling effectiveness:

Slot gecometry

Primary/dilution jets

Flow in the lateral directions N
Radiation from the bulk flow field and the opposite wall
Spray combustion adjacent to the wall.

0O 0O 0 0 O

The 2-D MWM can be used interactively with the combustor per-
formance models to more accurately predict near-wall flow field.
The 2-D NWM uses the same modules as the CPM.

To further improve near-wall calculations, 2-D elliptic and

3-D parabolic NWM have also been developed at Garrett.
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3.2 Description of Turbulence and Scalar Transport

The internal flow field in gas turbine combustors is highly
turbulent and recirculating. Efficient design of combustion
systems requires a detailed understanding of the physio—éhemical
processes of such systems. A prerequisite for this understanding
is an ability to analyze the nonreacting turbulent recirculating
flows.

The £fluid dynamics of turbulent flows are governed by the
time-dependent Navier-Stokes equations. Solutions of these equa-

- tions are extremely difficult and require prohibitively large com-

putational time. Furthermore, subgrid models are required to
describe the transport phenomena in addition to the Navier-Stokes
equations. A common alternative is to use time-averaged Navier-
Stokes equations. This system of equations contains unknown higher
order correlations resulting in a greater number of unknowns than
the number of available equations. Turbulence models of the higher
order correlations based on phenomenological assumptions are needed
to close this system of equations. The degree of success of a tur-
bulence model depends on the nature and accuracy of the phenomen-
ological assumptions.,

The simplest of the turbulence models are the mixing-length
models. In tihese models, the characteristic length scales of tur-
bulence are often prescribed to close the system of equations.
These models have been successful in treating simple flows 1like
boundary layers and pipe flows, but have been unsuccessful in anal-
yzing recirculating flows,

The next higher order turbulence models are the one-equation
models. These models solve one differential equation for deter~
mining the distribution of the turbulent kinetic energy or equiva-

~ lent characteristic property of turbulence. The characteristic
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length scale is defined in a manner similar to mixing-~length
models. Consequently, the one-equation models have also been
unsuccessful in predicting turbulent recirculating flows.

The two-equation models are more complex than the mixing
length models. These models use two differential equations for
computing characteristic velocity and length scales. Among the
two-equation models, the k-¢ model has been the most successful so
far. The k-€ model is used in the Garrett combustor analytical
models and is described in Paragraph 3.2.1. 1In regions adjacent to
walls, the viscous effects play a prominent role. To provide an
accurate prediction of the flow in these regions, a low Reynolds
number version of the k-¢ model is used in the Garrett near-wall
models. This model is described in Paragraph 3.2.2.

Even though the k-¢ model has been the most successful in pre-
dicting recirculating flows, the predictions for flows with stream-
line curvatures have been only qualitatively correct. Flow fields
involving streamline curvatures have been known to have increased
turbulence diffusion rates due to enhanced turbulence production.
This increased turbulence production is not adequately accounted
for in the k-€ model. One way to include this extra production of
turbulence is to modify the constants in the k-€ model in propor-
tion to the Richardson number, which is a measure of the extra
strain rate produced by the streamline curvature. These correc-
tions are described in Paragraph 3.2.3.

The Richardson number corrections are applicable for flows
with moderate streamline curvature effects. For flows with strong
curvature effects,; a solution of the Reynolds stress equations is

" necessary. Soluticn of the complete Reynolds stress components

results in increased computational time. An attractive alternative
is the use of an algebraic Reynolds stress model. In this model,
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the terms in the Reynolds stress transport equations are approxi-
mated to yield algebraic expressions in terms of the turbulence
kinetic energy and length scale. The degree of approximations
employed would determine the accuracy of predictions. The alge-
braic Reynolds stress model is described in Paragraph 3.2.4.

In complex combustor flow fields, the approximations used in
developing the algebraic Reynolds stress model are not valid. For
such flow fields, the Reynolds stress components must be obtained
from the solution of differential transport equations for the
appropriate Reynolds stress component. A description of these
equations used by Garrett are provided in Paragraph 3.2.4.

Another important submodel for combustor internal flows is the
scalar transport model. The accuracy of the combustor performance
predictions depends upon the accuracy of predicting the transport
of scalar properties such as concentration of reactants, etc. The
most commonly used scalar transport model is the gradient diffusion
model. The gradient diffusion model does not adequately account
for counter—-gradient transport, which has been known to exist in
most combustor internal flow fields. An algebraic scalar transport
model (ASTM) has been developed at Garrett, which can predict
counter~gradient scalar transport. This model is described in
Paragraph 3.2.2.

3.2.1 Governing Equaﬁions for the k-¢ Model

The time-averaged transport equations for turbulence kinetic
energy (k) and its dissipation rate (€) can be written in the fol-
lowing generalized variable form:
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rl | -5‘3)-(- (prud) + -5‘2- (prVe) + _aéi_ (PW¢)

o d d
- 2% O Teft 05) = o7 I‘eff,w?’
Il & FING
"F_(T(eff,(br 36( = S¢

(1)

Here p, reff,cﬁ and S¢, denote the fluid density, the local effec-

tive exchange coefficient of variable ¢, and sources/sinks.
source terms for the dependent variables are

L2, o2

o Turbulence kintetic energy, k =2-(u +V +\;7)

where

o Dissipation rate,

€
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The effective viscosity is obtained from the relation
Heff = utut

where u and H, are the molecular and turbulent viscosities, respec-
tively. My is related to k and e via

u=Cppk2/e (5)
The exchaﬁge coefficients are defined as

Tetf,d = Mot/ Tett, o

Recommended values for the constants in the above equations are

CD = 0.09
Cl = 1.44
02 = 1.92
Ueff, K = 0.9

”eff, e 18 calcuizited from

k2

Teff, e = 172

where the K is the von Karman constant taken to be 0.41.

" The near-wall region is given a special treatment in the pro-
gram., Since the expression for Togg is accurate for turbulent
flows only, a means is provided for the inclusion of the correct
shear stresses and other fluxes at the wall. Therefore, the nodes
next to the wall are assigned the following values as per an empi-
rical wall law: ' |
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¢,wall "o "‘L‘ln (97*)+p¢ (7)
Y+=pk|/2CD',l!a %
-1/4
Py = 9.0 (=Z—-1) (=Z-)
¢ %eff  eff (8)

where & is the normal distance of the wall from the first interior
adﬂacent node and o is the laminar Schmidt number.

The kinetic energy of turbulence has small diffusion near the
wall; hence, Tuall for k is set equal to zero. 1Instead of computing
Tyail for €, it is calculated for the near-wall node by assuming a
linear variation of the length scale giving the following expres-
sion:

e= o132 es) )

3.2.2 Near-Wall Low Reynolds Number Correction

In the near-wall region, the wall function approach, described
in the previous paragraph does not properly describe the behavior
of turbulence kineticAenergy and its dissipation rate, A sys-
tematic Taylor Series expansion technique has been developed by
Chien,17 which correctly describes the turbulent shear stresses,
kinétic energy, and its dissipation rate in the region near a wall.
To maintain the consistency of the behavior of k and € near the
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wall, additional terms had to be added to the k and € equations and
the turbulent effective diffusion rates were modified. The cor-
rected equations of Chien near the wall are as follows:

Turbulence kinetic energy; k
0 l 8 = 2 ok
ax (PUK) + r or (prvk) = X (reff,k 6x)

1_o ok 10
T Teffk or] *S% + D (10)

where, D is the extra source term, givén byv

D = -2u -“-2 (11)

y
Teff,k = (M + iy fudlogge (12)
fu = 1.0 - exp (-0.0115 y*) (13)

'Sk is the source term described in equation (2)

Dissipation Rate , €

- -2 o€
(pU ) + F (rPVs) = x eff€ 3
| (14)
I @ oe
v or | Teffe Br| *%+E
25

o




i LEE

where, E is the additional source term for dissipation, d«¢fined as

E = -2p exp (-0.5 y+) —% (15)
y
and Se = (C| G -Cyf, P€) E (16)
with f, = 1.0 - 0.22 exp (-Ry/6)2 (17)
Rr = th

In the modified k and € equations, it is possible to apply the
boundary conditions at the wall, with k = o and € = o at y = o,

‘This approach gives consistent results near the wall.

3.2.3 Richardson Numbers Correction to k—-€ Model

The standard k—-e¢ model presented in Paragraph 3.2.1 describes
the turbulence characteristics at any point in the flow field by a
single velocity and length scale. These scales are obtained from
an assumed isotropic turbulence structure. This model is adequate
for simple flow fields. When significant streamline curvatures are
introduced into the flow field, such as strong recirculation zones
or swirl, the k—-€ model does not adequately account for the en-
hanced turbulence diffusion caused by the extra strain rates asso-
ciated with streamline curvature. For analyzing éuch flow fields,
the k-e€ model should be modified.

A measure of the extra strain rate dué to the streamline curv-
ature is given by the Richardson number, Ri. The extra strain rate
imposed on the flow field would tend to increase both the velocity
and the length scales of turbulence. One way to account for the
changes in the characteristic scales is to modify the turbulence
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constants depending upon the Richardson number. For 2-D recir-
culating flows, the Richardson number can be defined as

2 Vv,
. _ k R )
R'c‘ = :2 —R2 R (RVR) (18)

where, VR and R are the resultant velocity and the radius of curva-
ture respectively. They are defined as

22
VR_ U+ V (19)
& _oU, 23V _ 2 U
1l Uv(ay'ax)"'u ax "V oy (20)
K
A

For swirling flows, the corresponding Richardson number is defined
by

v
N (jﬁ-) 2 (rvg)
Rng = {(21)
A2, (2 1?2

In the k-€¢ model, the governing equation for k is an exact
equation and no empirical modeling is involved in it. However, the
€ equation is a modeled equation containing two empiricél con-
stants. The adopted approach is to modify the constant C2 in the
equation by the following expression
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C, = l.92exp(-av0 Rive- «, Ri, ). (22)

Hexe«xvo and o, are empirical constants, whose values are of the
order of 0.2.

3.2.4 Algebraic Reynolds Stress Model

Turbulent flow fields occurring in combustors are generally
nonisotropic in character. The turbulent diffusion rates in dif-
ferent directions are different depending upon the strain-rate ten-
sor. Descriptions of such flow fields necessitate knowledge of the
complete Reynolds stress componeénts., Solution of the complete
Reynolds stress components is expensive and complex. An alterna-
tive to this approach is the algebraic Reynolds stress model.

The algebraic Reynolds stress model is obtained by approximat-
ing some of the higher order terms in the Reynolds stress eguation
based upon phenomenological simplifications., The approximations
result in algebraic expressions for the Reynolds stress components
with added empirical constants.

The exact transport equaticn for Reynolds stress uiuj at high

Reynolds numbers in an incompressible flow can be written in the
form
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axk axk

D(m’-j 2 (vow)- 1 /aujp' + 2P --ZE'("EiL','i ~9:L)
5\ 7 Tax | i p kzaxi 9%,

N s mr—  vm—  eumm— v

Convection Diffusion €.. = Viscous
Destruction
Y (s S A B <_a& . iﬁ) 23
U Uk axk UjUk axk P BXj axi ( )
~ R ~ Tes = Pressure-Strain
Pij = Production )

At high Reynolds numbers, the viscous dissipation €5 is essential~ :
ly due to t.2 small scale turbulent motions and hence tends %o iso-

tropize uluJ. The pressure-strain term has been modeled by Rod118

in the form

i, T Tt T (24)

Tid,1 represents the contributions to pressure strain arising

from fluctuatlng velocities only, and ’"13 2 acscounts for the inter-

actions between fluctuating velocities and mean strain.

These é \
terms are modeled as follows: | ! .
C! & oo - 25, k]
ij, | I kY 3 9jj (25) o
2 ay oU; BV RN
m.. = - e = .e - e = = - Mg
ij,2 a'é:u 3 Pau) B (Du 3 P? ij> Tk (axj * _a—fll (26) aE
where: ~
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8+C 8C', -2
Cy=l5 e = —=, 8= —q—

3¢, - 2, '
Y = 755 and C 2= 0.5
U, u, |
- | i i
Pij '( Yivk %y, + Yk Xy, )
V) U
3k k
Du = '( Vil ox, Y% xi)

Rodi has proposed that the convection and diffusion of u,u. can be

scaled by

D W) - Diff zuiuj)‘

k t
Dt i)

i} ‘L”d_ P -¢)

YiY; {gg - Diff(k)}

J

(27)

(28)

(29)

With this simplification, the above equation reduces to the formw

W2 - % € (C'l - l)k+ %— P @+B) + 2 (I-0)P

A€ D
Crk+ Cur E—;

- 30
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Z_%ec,-n+%P P -2Pp

— (31)
CIE".' CV' _P_E
wl o= @k - o D) (32)
W 2
v U
_a-‘;___l'(l-a)—'; + ¥Y-B l_<__2_8U
o ] o (33)
-vw =;(|~a)(v ?XQ_-—WZY_Q+"UV é3_\_/_Q)+)’k Vg
91 r dx ar
(Pl M- m Rk
r r (34)
-w st Y w V) - p (WYY -w Yo
X 3 dx r
) /s
0x s (35)
From Equation (33):
-2 —
2 '
Ch = |l ~a) = + ¥Y-Bu C
D ‘. k K / | (36)

The ASM provides a mechanism by which _ anisotropic turbulence
structure can be pred cted without substantial increase in computa-
tional effort. The empirical constants in the ASM have not been
fully established. They have to be determined by comparing the
predictions with the data base. : "
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3.2.5 Reynolds Stress Transport Model

Although the algebraic Reynolds stress model provides a means
of computing the anisotropic structure of turbulence, its accuracy
in complex turbulent flows is not expected to be good. In the alge-
braic Reynolds stress model, the closure of the system of equations
for Reynolds stresses was achieved by using a sgaling law through
which the higher order correlations were expressed as functions of
- lower order corralations. In complex internal combustor flows, the
validity of the scaling laws is questionable. In sﬁfh cases, the
only recourse available is to use the Reynolds stress transport
model, where the Reynolds stress components are determined by solv-
ing modeled differential transport equations for each stress compo-
nent. The closure of these transport equations was achieved by
modeling the higher order correlation terms in z manner analogous
to the methods used in the k-€ model.

The governing equations for the Reynolds stress components can
be written in generalized form as follows:

L3 2 (prud) + Fr (orvé) + Sy (PWY)

(37)
) 8¢ 3 8¢
- 3% T Tetr, dox) - or Tetf,dor)

| & 1
-7 50 ‘Teff, o7

S

)= Sé

Here &P, Tegf 0 and Sy represent the fluid density, local effective
’ ' !

exhange coefficient, and the source term for the dependent vari-

able, ¢. The source terms are

¢ Axial turbulence normal stress, 2

32

T




TR

R el

ORIGINAL PAGE |g
POOR QUALn‘Y

[# ] N
lc

- +§ G @eB) -2(-m)P

C
)
-

— oV

C
+2PB[ —-+Uw -&9— -2 YPk‘g—Li
2

2042 %% (i-a-8) - C'l pfz 2 (38)

(o} Radial Turbulence normal stress, V2

5\72 =% ;Oe(c:'l -1+ % Gy (@ +B) -2 7Pk %Mr

2Pl -a) | W %\,{ -ww L

_ __ oV
R
L .

-CiErZ - 20 -a-pyp 7 W (39)

o Turbulence Shear Stress, uv

S = -pU-a) |V Boow £, 2N

-k G+ ) rpw LU cap) - C) W (40)
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o Turbulence Shear Stress, T

—EBVO —7\’0 _.av

—_ _0 b5 0, =V
S G =-A1-a) | v S -W W s r 0w
—s oV, \) aV,
6 — 41)
+ P8 wz—a}-_- +'Uw—g'llfj‘-;7 r_0. —P'}’ka—ro- (
— U ' pe —
"'pvwé';(—(l-a-ﬁ) - CI—QE vw
o Turbulence shear stress, uw
— dV aV,
— — oU 2 "6 — %
Sow = ~Pl-0) WS YU ox Y Wur
—s 3V v
— 9V 279 — '
- PB VW--a?' + W a"x—- - Uv —;— -
. o (42)
oV . . o
- PYk —a—x—o - Clpi- uw + Puw(!-a-B)-%\l;/-

Here, Ci, o, B, and Y are empirical constants, whose values are
defined in Equation 26.

Solutions obtained from these equations iare used in the mo-
mentum equatiohs instead of using the gradient diffusion assump-
tions. In the new-wall region, boundary conditions for the depen-
dent Reynolds stress components are applied by assuming the convec-
tion and diffusion terms to be small, in accordance with the wall

function approach. The Reynolds stress component wz is computed

from the relation
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3.2.6 Scalar Transport Model

The turbulent transport of Scalar properties in a flow is
Quite different from the transport of momenta. The most common
method of describing turbulent scalar transport is the gradient
transport law through the use of Prandtl/Schmidt numbers. This
apprach is adopted in the standard k-€¢ model. In the gradient
transport model, the turbulent transport parameters of interest are
defined by the following.

pub' = - Toee 9 Tox (43)

— 06

pve' = - IEH,O T (44)
-~ 2 9T\ 2 (8T )2 (45)
P6" = a5 € Teft,o [(““ax') "( or )

where
Teff,p = Feff/%

Here, 9% 1is the Prandtl/Schmidt number for the scalar, 4 and
®g is an empirical constant. Recommended values for these are,

% = 0.9 and @y = 0.8

The gradient diffusion model does not predict any counter-
gradient diffusive transport. However, in many flows, regions of
counter-gradient diffusive transport have been known to exist. For
such flows, the scalar transport terms must be obtained from appro-
priate transport equations.
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3.2.7 Algebraic Scalar Transport Model

The governing equations for scalar transport are coupled non-
linear differential equations, which are quite time consuming to
solve. However, by using scaling laws analogous to the method
used in developing the ASM, it is possible to obtain algebraic ex-
pressions for the scalar transport correlations. These expressions
could still account for the counter-gradient scalar transport.
The detailed steps used in deriving the algebraic scalar transport
terms are described in this paragraph.

Transport Equations for u.f';
I

B ——

Di ».'-“.'f .0 = s - \
iv (v uje) Dif (PUJB) pPJB Pew + p;[;je (46)
! S et
Convection Difosi‘qn Production l Redistribution
Dissipation
— oU,
. LT B g T
Pje = TXT: X u;6 5% | 47
’ ou. ' :
- 1 96 s
€jog = Heff ox; Ox; (48)
R ] ou
. - .*' . "_'J'
Vie Clo K Yo+ S v;6 ox; i (49)

Assumption:

1 1
—_— —_ u.0 u.0
Div (pV ujo'> - Diff (pujo'): a -‘-(1- (P-e) + a, A (Py -€9) (50)
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where:
7 58
Po = - 2y6 5% (51)
€= £ ‘;Z
e 0 K (52)

a, and a, are empirical constants to be determined.

2
]
The transport equation for scalar fluctuations, ¢ , is

-
——

— |2 : —!—Z
div (pv0 ) -  Diff (P8 ) = PPy - pe (53)
Convection Diffusion Production  Dissipation
where,
- 0. 28 _ o 90 vo 29
Pp = - 2 Y, xj_-Zuo <~ - 2V - (54)
and
| — '
= € 0
€9=% = - (55)
For minimizing computational effort, the following assumpticn e

"is made in a form consistent with the model for velocity fluctua~-
tions. ‘
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Assume:
2 2 2
div (Ve ) - Diff (P0') ~ C, —BL (p.) (56)
Using Equations (53) and (56)
2
R, - Py = C, —EL (P-q) (57)

With these simplifications, the correlations for scalar quantities
reduce to the form:

— [ = @l £+a('i'£)] (58)
- vo = [}V 3x *t V 5{] [le k ‘ | k
e _ |72 a9 — 28 U
-ul = [u x T U TC o4 vé ar (1 —CZG)
a P- ¢\ € olU
l —k—) + Cle E + (I -Cze) 5‘; (59)
— - L
9! _ [ ? 9 [} a
= - 21u %& + Vv 5;]
[CG (l_:’_;__e_) + ay ké] (60)

The assumptions used in the derivation of the algebraic stress
model are applicable for the flows that are close to local equi~
librium. However, this model does not neglect any of the terms in
the transport equation, and only a scaling law has been employed.

The algebraic relations shown above express the turbulent scalar
transport as a function of both mean scalar gradients and mean

velocity gradients and hence can predict counter-gradient scalar
transport. |
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3.3 Gaseous Fuel Combustion Models

Successful modeling of combustors depends upon a correct de-
scription and coupling of the fluid mechanics, turbulence, heat
transfer, and chemical processes involved. The rates of turbulent
exchange of various species and the rates of chemical change need
to be modeled. 1In turn, this modeling will determine the details
of quantities such as energy input to the gas stream, flow
patterns, temperatures, and species concentrations. Turbulence
models have been developed to a reasonably satisfactory stage. The
state of development of chemical models is not rearly so satisfac-
tory and is discussed in Paragraph 3.3.1.

The turbulence/chemistry interaction model currently used by
Garrett is a modified version of the eddy-~-breakup model; work is in
progress on the deveiopment of a perturbation analysis technique.
These models are described in Paragraph 3.3.2.

3.3.1 Hydrocarbon Reaction Mechanisms

A successful modeling of combustion systems depends on an
adequate description of the reaction mechanism. For hydrocarbon
oxidation, a large number of species participating simultaneously
in numerous elementary kinetic steps is required to specify the
- reaction mechanism. These differential equations are "stiff" and
require special time-consuming integration methods. For a complex
3-D problem, the computing costs would be prohibitive. Besides the
lJarge number of species equations to be solved, the elementary
steps and their rate constants are not well known except for the
simplest of hydrocarbons (e.g., CH4). To avoid this problem, the
gas turbine combustion modeling effort has frequently been simpli-
fied by using a global approach that reduces chemistry to the
specification of an overall global oxidation scheme. This can pre-
dict quantities of interest: fuel consumption and heat release
rates,
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One Step Scheme

The simplest global mechanism is the one-step scheme:

- Cy Hy+(X +§)02 -xcoz+§ H,0

The advantage of this mechanism is its simplicity; it involves
the solution of the conservation equations for unburned fuel and
the mixture fraction. The heat release and the concentrations of
the other species are then obtained from linear functions of the
amount of fuel consumed. This mechanism, however, fails to predict
the important characteristics of hydrocarbon oxidation, i.e., the
formation of intermediates and CO, which influence the process con-
siderably. As a result, this mechanism is inadequate for obtaining
\>quantitative predictiohs.

Two-Step Scheme

A slightly more complex scheme is the two~-step mechanism:
X Y Y Y Y
XCO + % (0, + nN,) =X CO, + 5 nN

2 WV2 2 272"

. \
This scheme involves the solution of one additional equation:
that for the concentration of CO, Although the two-step scheme has
been widely used by Garrett, it is deficient in that the formation

of intermediates is ignored. The derivation of the pertinent egua-
tions is given below.

For the first reaction, °
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(mass of 02)/(mass of fuel),

2]
]

2 (mass of CO0)/(mass of fuel),

2
]

3 (mass of HZO)/(mass of fuel); (61)

in the second reaction:

I, (mass of 0,)/(mass of o),

r

5 (mass of C02)/(mass of C0). (62)

The values of these ratios can be calculated in a straight-forward
manner:

= X2 X :
1= (2% 3) Wo/¥ey

Ly = X Weg/Wey

ry = (Y/2)Wy,o/¥Wgy

Ly = (L/2)Wo /W

£s = Weo, Mo (63)

Here the W's are the molecular weights of the chemical species.

The mass fractions of all chemical species obey the general
differential equation with S5¢ as defined in Table 2. Further, the
diffusion coefficient F¢ can be taken to be the same for all
species, especially when the flow is turbulent. The value ofI¢ is
then ut/at, where o is the turbulent Prandtl (or Schmidt) number.
The source terms for various species are related via the ratios
defined in Equations (61) and (62). As a result, the mass frac-
tions of the species can be added in certain proportions to yield
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zero source terms.

This is shown in Table 2.

Here Sfu denotes

source for fuel due to the first reaction, while SCO stands for
rate of production of CO in the second reaction.

the
the

TABLE 2. SOURCE TERMS FOR CHEMICAL SPECIES.
¢ 8 -

Mfu Sfu
Mco Sco ~ 2S¢y
Mox L15¢u * T45co
Mcos = I55¢o
My.0 - 38¢y

$a= Mgx = (ry + Iy rdmg, = rgma, 0

¢B = mc02 + rsmCo + ]:,'2!'5 mfu 6

% = Myoo + 3 Mgy 0

The last three entries in Table 2 show that,

because their

source term is zero, a single solution for them would suffice pro-

vided their boundary conditions are the same.

. This condition can

be ensured by normalizing the ¢'s with reference o their values in
the air and fuel streams.

Thus a single variable f with a zero

source term and with values 0 and 1 in the air and fuel streams
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respectively can be regarded as providing the solutions for ¢A' ¢B
and ¢c via the following relationships:

£ o= ¢A-¢A, air - ¢8-¢B, air - dc-dc, air
qu’ fuel'¢A,Air ?B! fuel'd’B,air ¢C,fuel'¢C,oir (64)
Further, let: ‘\
Mey)fuer = 1
and >
(Mox)air = R
(My2)aiy = 17R ~ (65)

Combining Equations (64), (65), and the definitions of ¢A’ bpr dcr

we have:
Moy = R(1-£) + r, myy + (ry+rpr,) (mg —f) (66)
Mg, = Eafs(E-Mgy) = Iglgg (67)
M0 = F3(E-mgy) (68)

Incidentally, £ can be considered as the mass fraction of "total
fuel" that would prevail if the fuel did not react at all.

The reaction rates Sfu and Sco are given by the following
relations:

Sgu = - (The smaller of Sq and Sz)r
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"'where
L] 005
Sl = Fl ple> Mgy Mox exp(—El/RT),
Sy = Cp,1 Pmgy €/k. (69)

Here, CR,l is the eddy breakup constant for first reaction.
Recommended value for CR,l is 3.0

SCO = = (The émaller of 83 and S4),

L]
n

2
3 F2 P Mmoo Mox exp(-EZ/RT),
S4=Cp,2 phgo /k- (70)

CR 2 is the eddy breakup constant for the second reation, recom-
, B
mended value for C is 4.0

R,2

The constants in the above expressions are given the following
values:1

F, = 3.3x10M%, E,/R

27000., c 3,

F, 6.0x10%, E,/R
all in S.I. Units.

12500., C 4,

To summarize, the quantities Menr Mogr and £ are used as the
dependent variables of the differential equations. The source
terms for Mg and M~y are calculated from Equation (69) and (70),
while the source for f is zero. The values of Mox # mCOz' and mHzO
are then obtained from Equations (66), (67), and (68). Lastly, mN2
is calculated from the fact that all mass fractions should add up

to unity.
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Four-Step Scheme

The oxidation of hydrocarbon fuel can be described by the fol-
lowing steps:

(a) Transformation of the hydrocarbon fuel into intermediate
hydrocarbons and hydrogen with little release of energy

(b) Oxidation of intermediates to CO and H2
(c) Oxidation of CO to CO2
(d) Oxidation of H, to H?O.

Steps ‘(b) through {d) are exothermic and are responsible for the
release of energy and associated temperature rise. A reaction
scheme, which is designed to correctly model the oxidation process,
must include a description of these steps.

The simplest mechanism that accounts for the essential fea-
tures of the hydrocazhon oxidation is the £following four-step
scheme proposed by Hautman, et al.19

| . N
CnManez—= 3G H+H,

C, H[}-l-O2 -~ 2CO +2H2
CO + I/ZOZ—»CO?_

- Hy+ I/ZOZ-— HZO
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which is wvalid only for aliphatic hydrocarbons (of the type
CN Honga)e To accommodate a general hydrocarbon cxﬂyg the first
two steps have been modified:

. Xo - -2
CyHy.2+%0;" X CO +5£H,

This scheme involves the solution of two transport equations
for the concentrations of CxHy_2 and H2’ in addition to the trans-
port operations for unburned fuel, CO, and "total fuel" as outlined
in the two-step scheme.

3.3.2 Turbulence/Chemistry Interaction

In this section, a review of turbulent combustion models is
provided. This is followed by a description of the models under

investigation at Garrett. Finally, 'a summary of turbulence/-

chemistry interaction modeling is provided.

Review of Turbulent Combustion Models

An adequate treatment of turbulence/chemistry interactions is
essential for a reliable combustion model. §&nce the kinetic equa-
tions are nonlinear in temperature and concentrations, large errors
can be caused by incorrect time-averaging of the various terms with
attendant effects on heat release rates, time-averaged gas temper-
atures, and convective and radiative fluxes to the liner walls.

The Problem - It has long been realized that the practice of writ-
ing chemical kinetic equations in terms of time~averaged local var-
iables such as

W= rvi ?ij exp {-0/T} S (71y
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is unsound in turbulent mixing flows with relatively fast kinetics.
Here Wi is the chemical reaction rate for species i of mole frac-
tion Yi; Yj is the mole fraction of another species; A is the pre-
exponential factor in the Arrhenius expression for the chemical
kinetic rate; ¢ is the activation temperature; and v i* the abso-
lute temperature, the overbar indicating time averaging. Equation

(71) neglects the correlations between fluctuations in the various

quantities, e.g., Y'iY'j' Y'iT' and the contributions from these

terms can change the computed reaction rate by an order of magni-
tude or more. Attempts to compute the various correlations direct-

20 and Borghi,Zl have proved suc-

ly, as has been done by Donaldson
cessful only in flows where the fluctuations are low and the heat

release is not large.

The Fast-Chemistry Approach - A more satisfactory apprcach in non-

premixed combustion systems is based on the assumption that the
chemistry is fast. The chemical reaction rates are then entirely
mixing controlled and are a function of the turbulence rather than
the chemical kinetics. Two versions of this approach are in cur-
rent use.

In the first version, equations for conserved scalars such as
the element mass fractions or the mixture fraction are solved,
instead of solving directly for the individual combustion product
species. Molecular species concentrations and temperature are then
determined from the compu#id moments of the conserved scalar,
usually by assuming some probability density function for the con-
served scalar. The fast chemistry assumption implies an instanta-
neous relationship between molecular species or temperature and the
conserved scalar. Chemical reaction rates can be found, if needed,
by differentiation. Such an approach has #2en used by some inves-
tigators, e.g., Lockwood. 22
include the treatment of any‘tygw of #eaction mechanism, even a
single-step one, entails complif: e

The prohiem is that the extension to
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In the second version, molecular equations are solved and the 3
chemical reaction rate is modeled directly in terms of turbulence ;
quantities. The Spalding eddy breakup (EBU) model23 is the prime
example of this approach, in which single or multi-step reaction
mechanisms can be handled, when suitable modifications to the model
are made. This has been done by Garrett, which has developed a mod-
ified version of this model.

P

Both of these approaches give qualitatively satisfactory
- results for the main species concentrations and temperature. The
problem, however, is that chemical kinetics is no longer involved.

The Inclusion of Chemical Kinetics - Although the majority of fuel
oxidation in gas turbine combustion systems is essentially mixing
controlled under most operating conditions, the chemical kinetic
effects must be included to predict hydrocarbon emissions, flame
stabilization or blowout, CO emissions, soot formation and burnout, !
and NO formation. The problems of satisfactorily including the §
chemical kinetics into the chemical reaction rate have proved to be {”;
formidable. %““

}
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As a first step towards inclusion of the kinetics,; the EBU
model has been modified at Garrett to compute the reaction rate R
from the minimum of the EBU rate and the well-stirred reactor

global reaction rates. Garrett has used 2-step and, recently, 4-
step kinetic schemes. The procedure is illustrated'here with a f:,
single-step reaction scheme. }‘
R = min [Rgg p Rygs] (72) g
Regy = CrPoe/k (73)
Rys = AP M M 05 exp CE/RT) | (74) e
¢ = min [Mfu’ ,1] : (75) E.-
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Rppy = the eddy-breakup rate of chemical reaction;

the well-stirred rate of chemical reaction;

-

CR = empirical constant;

A = Arrhenius pre-exponential faétor;
P = density;

Moy = mass fraction of oxidant
Mfu = mass fractior of fuel

E/R = activation temperature;

T = absolute temperature;

k = turbulence kinetic energy
€ = dissipation rate of k

i = mass of oxidant per unit mass of fuel.

This model, which was used in the computer codes developed by
Garrett for the US Army,12
correlations. A further extension of the model at Garrett solves a
transport equation for the fluctuation, g (=¢F), of the fuel con-
centration rather than obtaining ¢ from Egquation (75). This addi-

has been found suitable for qualitative

tional equation results in better agreement between the predictions
and experimental data for typical combustor geometries. It is
still not suitable for accurate quantitative predictions and for
problems such as kinetic effects on temperature or satisfactory
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estimates of free-radical concentrations. These quantities are
required for accurate prediction of CO, since CO consumption often
occurs via the reaction CO + OH = C02 + H.

Achievement of a satisfactory approach to the modeling of the
chemical reactions has led to several rather novel approaches to
the problem. Many of these methods, such as Spalding's ESCIMO

24 Chorin's Vortex Dynamics, large eddy simulation tech-
25

model,
niques, and joint PDF approaches,
magnitude increase in the size and complexity of the computation

involve at least an order of

and as yet are not completely formulated. One approach, based on a
perturbation analysis for reaction kinetics, does not involve such
an increase in size and complexity, and has been formulated by
Bilger.26 This method, as described in the next paragraph, has

been adapted by Garrett.

The Perturbation Analysis for Reaction Kinetics

In this approach, a turbulent diffusion f£lame model has been
develcped.27 It uses a double reaction zone model and perturbation
analysis for finite rate kinetics for hydrocarbon combustion. A
system of eight parabclic transport equations is solved. The system
consists of the usual k-¢ model equation in Favre averaged form for
continuity, momentum, mean mixture fraction, spébific turbulent
kinetic enerqgy, and turbulent kinetic energy dissipation rate, with

- additional scalar transport equations for mixture mole number per-~

tubation, unburned fuel mass fraction pertubation, and mixture
ffaction variance. The thermodynamic state (and composition) of
the flow field is contained in an equilibrium model of the hydro-~
carbon-air mixture in terms of mean mixture fraction. The progress
of the chemical reactions (and thereby the molecular kinetic rates)
is contained in perturbations or constraints on the eguilibrium in
terms of mole number and unburned fuel mass fraction. The unburned

50

e HH

w




fuel méss fraction and the intermediate are specified as functions
of mixture mass fraction, €. For the fuel,

= (76)
Yi3=Yo3 +Y
. where
<&<&
Y3 =0 0<é<éig
and
(£-€.) - )
i £.
Y°'3 = —-I—:Tlgg— Ig < £<I )
where
y is the pertubation in fuel mass fraction

Y°13 is the "fast chemistry" (i.e., zero pertubation) fuel [

mass fraction
Yl3 is the fuel mass fraction

fig is the mixture fraction where a "reaction sheet"
consumption or pyrolysis of fuel occurs under fast
chemistry conditions similar to the classical
Burke-Schumann formulation. gig here is taken as . N
0.073. . o
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For the intermediate hydrocarbon, its mass fraction is given by,

- )< € <
Yi2=0 0§ <£ (77)
(78)
Yy, = f-ifr (¢- &) §s<é<éyg
s
T8y (=%
where
r is the mass fraction of fuel in the inlet fuel
stream
le is the intermediate hydrocarbon mass ifraction
e is the fraction of fuel by mass that is converted to
intermediate at Eig for fast chemistry conditions.
e is taken as 0.2
and g is the stoichiometric mixture fraction

Hence, the double reaction zone at fs and gig'

Thirteen species are considered in the reactions. H, H,, H,0,
0, OH, 02, H02, NZ' Ar, CO, and 002 are calculated from partial or
constrained equilibrium, and the fuel and intermediate are speci-
fied as in Equations 76-79. The pertubation in mole number space

is a result of the rate of three~body recombination reactions,
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HtH+d — H, + M R1
H+OH+M — H,0 + M | R2
H+0,+M —»= HO, + M R3
H+O+M — OH + M R4

The progress of these reactions toward equilibrium is measured by
mole number, N -

¥
N, = ;7'_ Mole (80)
i=1 i Kg
where
Yi is the mass fraction of species i
and
Wi is the molecular weight of species i
The pertubation in mole number is defined as
n = N-N° , (8
53
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Where N°® is the number of moles at full equilibrium. Theh, for vari-
ous pertubations in mole number space for a given mixture mass
fraction, the time rate of change of N can be calculated from reac-
tions R1~-R4 using here the kinetic data of Jensen and Jones .28

Perturbation Equations

From the species balance transport equation,

oY. oY.
oY, i 8 [pD 21 ) _ |
s PRI T \T )t O (82)

where the molecular diffusivity is assumed to be the same for all
species, and using Equations 80 &::d 81 gives, A

2 2
an an. ., 8. an\ _ of d7Ne (83)
tr * pUk g« * axk PD X, = pD axk de W,

W is the source term for mole number

A similar equation can be written for the fuel mass fraction. per-

turbation.
oy 3% o By FIAY d2Y°l3 . ow :

WY is the source term for mass fraction

where the dependence of y on N° is neglected.
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Then using density weighting (Favre averaging), the equations for
turbulent flow become,

- ~ N2 2.
— o) o (& o€ d"Ne  —
P ~ ZF=— + = \P u"™") = pD —-) 5 + W
U, 0% 6xk ( ) <6xk d 52 n (85)
- & . e (___ ~ ) m 2 d2 Y3 _
~ L2 not) -
P u, 9% + CEN pouly pD axk d §2 oWy (86)

Using gradient modeling of the turbulent fluxes and k-€¢ modeling of
the scalar dissipation X

where

2
k (87)

the Favre averaged scalar dissipation rate is

~,

X=Cq €52 (e)

(88)
where Cg is a model constant with value of 1.79. Then,
2
—~ W o |Heff Hn e 2
Py, == - = 1/2 P C_ é (e/k) a = /s
k &%), %), o, 9% g, ( ) Ny,s P (fs)
(89)
+ W
n
—~ 3y Hett a5 — ™ ~
Y 8y l_..?_. Al = 112 T ¢ v (e/k
i axk axk cry _4'1:4;,‘_:: / 926 (/) A)’ p(fig) (90)
+ W,
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The parameters AN,s and Ay rebresent the net change in dN°/d¢ and
dY°13/d§ across the reaction zones at §S ané ‘sig’ respectively, and
p(£) is the Favre probabiilty density of €. 1In deriving these
equations, the usual high Reynolds number assumptions have been
made and the scalar dissipation is assumed not tc be correlated
with the mixture fraction.

Finally, the mixture fraction pertubation,
P f - g

gives the transport equation for the variance of the mixture frac-

tion
SNy Feff a§"~2 a§'~2 ? — g
P U 3% 7 3x o ~  0X = Cg, Pesf | 5x - G, P
9% k \Te2 P )9 % 2
91y

The main features of measured probability density functions are the
strong spike associated with the free stream and the continuous
distribution generated by turbulence. By splitting the two, a
clipped Gaussian intermittent formula is used to represent the
Favre averaged probability density at a particular value, ¢

a
N2
Y T, -
~ ———in - 112 (Ef 50)
P (¢ )= ~\ 12 P =
( 0) Var (E"z), ( g"z)
‘ T (92).
wher T o= MY
ere g, T &Y
~ ‘ 2 It
Y= 1 for " <0.25
Y= ~ Ijg for & = 0.2582
g" / g + |
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(-7, - G -F ] 0nE

and

(93)

Also from simple fits to the partial equilibrium calculations, the
mean density as a function of the mole number and fuel mass func-

tion pertubations is
"~/

& = [v?(‘f)]" + 7 (00227 + 1.38%)
(94)

where v° (¢) is the Favre éverage specific volume for 2zero per-
turbations.

Lastly, the kinetic dependent source erms 'va and W; are given by,

_an = ?fffq(fy ny ¥) wn'(f’ n, y) (UP)E(& n, y) d¢dndy

(95)
——— —(* ~
and w, == B[[fs; & VB en Ndydndg
(96)
where w / = - 9000 n2 moles
- njP ~ ‘ I(E?e—c

from consideration of the partial equilibrium calculations and
q(é, n, y) is a quenching function to allow for breakdown of the con-
strained equilibrium represented as follows:
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q&ny)=B¥¢) = 0 for € < 0.01
= 50 (£ -0.01) 0.01 < £< 0.03
= | £ > 003

Simplification of the jecint P.D.F. yields .
W = - pB* 90007 2
n P n

The £fuel source term wy is evaluated based on the kinetic rate of
Duterque29 over the range of expected values of £, n, and y and again
the joint P.D.F. is avoided, as

£ 3

|
y=-TF j’s;(f,?;,“y‘) P (&) dg
o
where (97)

¢ Y . gs3.lolt OTZ exp 23500 | oo -!

where Xo2 oxygen mole fraction and temperature, T, are taken from
the partial equilibrium calculations for Methane.

The above three differential equations are combined with the
other five Favre averaged equations, as mentioned above, written in
cylindrical coordinates and transformed using the stream function

oY= puror

and put in finite difference form using a Crank~-Nicholson central
difference 2cheme. The nonlinear coefficient terms and source
terms were evaluated as the mean of the upstream value and the
first estimate of the downstream value.

Then, for any "output" position in the flame, the effect of

pertubations on species mole fractions and temperature is calculated
from the local P.D.F., ‘
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K= [ X GRNP @ (98)
)
|

T = j T (€,% VP (&) d¢ (59)
(s}

again, where joint probabilities have been avoided.

3.4 Spray Evaporation/Combustion Models

Since the influence of the liquid fuel spray on combustor per—
formance is quite pronounced, an accurate spray model is essential
for any combustor modeling effort. The modeling of liquid fuel
sprays is discussed in this section.

The spray model currently used hy Garrett is based on a
Lagrangian discrete-droplet approach allowing for droplet slip but
no turbulent dispersion. Eulerian (continuous formulations) ver-
sions allowing for dispersion, with or without droplet slip, have
also been developed by Garrett. Both approaches offer advantages
in certain circumstances.

3.4.1 A Review of Spray Models

A number of spray evaporation/combustion models have been dev-
eloped and used with varying degrees of success. Several review

30,31

papers are available in the literature; an excellent recent

review paper is by Faeth.32 Faeth has divided the spray model work

into two major categories:
o Locally homogenecus flow (LHF) models

K Separated flow (SF) models
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In LHF models, the gas and liquid phases are assumed to be in
dynamic and thermodynamic equilibrium at all times, with no droplet
slip, Consequently, the use of LHF models should be limited to
finer droplet sprays. Although the LHF predictions tend to
approach measurements as the droplet size reduces, the agreement is
relatively poor, even for the sprays that have an SMD of around 30
32 Compared to the SF models, the LHF models are easy to
use because they require minimum information concerning fuel injec-
tor characteristics, fewer empirical constants, and shorter com-

microns.

putation time. The LHF models give useful qualitative descriptions
of the spray development, the rate of which is generally over-
estimated.

In SF models, finite interphase transport processes of mass,
momentum, and heat are taken into account; and these models are
therefore of more interest in gas turbine combustor modeling. The
SF models can be broadly divided intc the following two major cate-~
gories:

o} Discrete Droplet Models (DDM) - Lagrangian
o Continuous Formulation Models (CFM) - Eulerian

Both categories contain features that make their "application to
practical combustors desirable. In DDM, the fuel dfoplets are as-
sumed to exist sufficiently removed from each other that droplet-
to-droplet interaction can be neglected. This assumption is quite
reasonable for regions in the combustor other than very‘close to
the fuel nozzle spray origin., Thus, the analytical modeling of a
single droplet can be applied to the gas turbine spray that gréatly
simplifies the formulation. The nozzle spray is divided intoc a

33

number of size groups usually determined experimentally, with one

droplet representing the behavi<i =7 all the droplets in its group.

A DDM is constructed for each size jroup. Given an initial velo-

city and temperature as determined from the injector characteris-

tics, the droplet trajectory is calculated through the flow domain
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as governed by drag and other forces, until the droplet evaporates
or exits the calculation grid. At each point along the flight path
as evaporation occurs, modifications are made to the momentum,
enthalpy, and species equations that govern the gas phase flow.

The second major category of SF models is CFM. These models
solve turbulent transport equations for the motion of the droplets
and the turbulent diffusion of droplets is included. An underlying
assumption is that all the droplets and the gas phase have the same
velocity. The computational effort required for CFM is greatly in-
creased because a complete equation (similar to the momentum, spe-
cies, etc., equations) must be solved for each droplet group. Com-
puter storage must also be allocated for the extra variables. A
major disadvantage of this approach is that errors are generated in
the vicinity of the fuel nozzle. Since the difference in the
liquid and gas phase velocities is very significant in this region,
a better resolution of grid spacing is needed than can be managed.

3.4.2 Garrett's Spray Models

The main requirement of a spray model is accurate predictive
capability within a :¢asonable amount of computational effort, es-
pecially for 3-D flows of practical interest. To achieve accuracy,
various physical processes must be incorporated into the model in a
realistic manner. Thus, relative velocity differences between the
gaseous and liquid phases (droplet slip), resulting in interphase
momentum transfer, must be considered. Also, the evaporation of
droplets during heat-up time (interphase heat and mass transfer) is
important in order to predict ignition processes. Finally, tur-
~ bulent diffusion of droplets is important but is generally ignored
in most of the spray models. Stochastic models to consider tur-

35

“bulent diffusion, as reported by Gosman are computationally ex-

pensive when applied to real combustors.
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On the computational aspect of spray modeling, it should be
realized that a different degree of resolution is required in the
near-injector and far-injector regions.

Consideration of these factors has led to the development of
the Garrett spray models, the features of which are described
below.

Evaporation during heat-up time is considered in the Garrett
model and the computation of heat-up and evaporation rates includes
realistic properties of jet aviation fuels. The spray model is ap-
plicable to both dense and sparse sprays and is coupled into either
the 2-step or the 4-step global hydrocarbon oxidation scheme; it is
available in both 2-D and 3-D combustor performance pro-
grams.

Velocity differences (slip) between the droplets and the gas
phase are modeled, and so is turbulent diffusion of the droplets.
For - computational purposes, the droplet size distribution is dis-

cretized, - . differential equations in a Eulerian framework are

"solved for the velocity components and concentration of droplets in
each size group (typically five size groups are considered). To
obtain good resolution in the near injector region, Lagrangian
equations of motion for the droplets are solved in this region.
Each class of droplets is tracked through the flow field in the
vicinity of the injector and the interphase transports of mass,
momentum, and energy are used to couple this solution to the
Eulerian equations. The model thus combines the desirable features
of the DDM and CFM approaches.
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Lagrangian Model

e s e 5 ——

The Lagrangian model was initially pursued since the formula-
tion allows the tracking of small fuel droplets that are signifi-
cantly smaller than typical grid dimensions and since the computa-
tional requirements for 3-D flows are quite small. In addition,
the assumption of sparse sprays and no droplet-droplet interaction
is quite reasonable for most regions in a gas turbine combustor.

The generalized governing equation for fuel mass fraction is

div (pVmg,, - I}u,eff gradmg ) = g -Rg,
(109)

where Rfu is the destruction rate of fuel and ﬁ:' is the rate of
vapor production from the fuel droplets. The vapor production rate
or evaporation rate is determined from the burning rate constant
ko? which relates the change in the square of the droplet diameter
(D) with time.

2 8
d:-D7) = I
k - In(l +B)
(1o1)
where: Ay o= Thermal conductivity of vapor
CPl = Weighted average specific heat of vapor and air
B = Mass transfer number
Pf = Fuel density

from the burning rate constant, the fraction of fuel evapora-

ted from a group'of droplets (AFi) can be determined from the time

integral;

_ L5
aF i‘mf PD; kdt :
' S | (102)
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where Dio is the initial droplet diameter and the i subscript de-
notes parameters of the ith droplet group.

The total evaporation rate is then given by

m ﬂ.'lf N
Ny = A~ 103
Me = "NV~ 2 AFE ( )
where: ﬁfu = The total fuel flow rate
N = Number of droplet groups
AV =

Volume of grid cell through which droplet is pass~
ing

The calculation of "

e given above is based on the model of
Williams,30 which uses the temperature difference between the drop-
let and ambient as the driving force. An alternate approach is
that of Priem and Heidma_nn,36 who use the partial pressure of the
fuel vapor as the driving force. The advantage of the Priem and
Heidmann technique is its applicability to low temperature situa-

tions'sm¢h~é§ altitude ignition, unlike the Williams model.

“he egpression for evapdration rate for the Priem and Heidmann

model iz )

m 9 (104)
thy, = D" K P @

"

where:

| K = Function of vapor diffusivity and droplet Reynolds
number ’ o '
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Pvap = Vapor pressure of fuel at droplet surface
Po Po
a = In -
Pvap P“’ - onp
P, = Ambient pressure

Eulerian Model

The salient features of the model are (a) velocity differences
(slip) between the droplets and gas phase are allowed; and (b) tur-
bulent diffusion of the droplets is included. For computational
purposes, the droplets are considered to be present in a certain
number (typically 5 tc 10) of discrete size ranges. Differential
equations in an Eulerian framework are solved for the velccity com-
ponents and concentrations of the droplets in each size group. In-
terphase transport of mass and energy (due to droplet evaporation
and combustion) and momentum (due tb drag between gas and liquid
phzses) are taken into account. Turbulent diffusion of drops is
treated as if the droplets were present as a gaseous constituent.
The approach used here is to assume the diffusion to be governed by
a Fickian type law with an appropriate turbulent Schmidt number,
assumed to be uniform over the flow field; but this is easily ex-
tended by specifying the turbulent Schmidt number as a function of
local flow characteristics. The model is applicable to both dense
and sparse sprays insofar as the volume occupied by the droplets is
included in the governing eqguations.

The partial differential equations governing the droplet mo-
tion and concentration of each size group are all written in one
general form as

—g—t - (Rp® +div {R (;Dtd" -%'gmd ¢) } = S¢ (105)

65




where: R = Volume fraction of the droplet size considered
P = Density of the droplets
¢ = Velocity component or concentration of droplet size
considered

U= Velocity vector of droplet size considered

¢ = Turbulent viscosity
Tp = Effective Schmidt number
S¢ = Source of ¢.

The term S¢ contains the pressure gradient, surface friction,
and interphase drag if ¢ is a velocity component; interphase mass
transfer (evaporation rate) if ¢ is droplet concentration; and in-
terphase heat transfer (heat-up} if ¢ is the enthalphy.

A drawback of the Eulerian model is that it cannot give ade-
‘quate resolution in the near injector region. An excessively fine
finite~difference grid would be required to obtain adequate resolu-
- tion. The Lagrangian method is capable of providing this resolu-
tion in the near injector region, Garrett has therefore coupled
two methods in order to utilize the advantages of each. The method
is described next.

Lagrangian/Eulerian Model

i

The concept of this model is analogous to the near-wall treat-
ment described in Paragraph 3.2 and it can be called the near-noz-
zle spray treatment.  The interaction between the Lagrangian and

Eulerian solution is through the boundary conditions and the source
terms.

To obtain good resolution in the near-injector region, a spe-
cial treatment is used in this region. The gas properties eval-
‘uated by the Eulerian solution are used to solve a set of
Lagrangian equations of motion for the droplets again allowing for
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interphase mass, momentum, and energy transfer. Each class of
droplets is tracked through the flow field in the vicinity of the
injector and the interphase mass, momentum, and energy transport
that appear as source terms in the gas phase equations are thus
evaluated. These terms are obtained by summing overall droplet
size groups for each elementary control volume. The Eulerian equa-
tions are then solved again including the interphase transport
items. The procedure is repeated until it converges to the desired
degree of accuracy.

Physical Processes

The physical processes involved in spray modeling are inter-
phase momentum transfer (drag forces), interphase heat transfer
(droplet heat-up) and interphase mass transfer (droplet evapora-
tion), and turbulent dispersion of droplets. A brief description
is provided in the following paragraphs.

Drag Forces — To calculate the drag forces on the droplet, the drag

coefficient, CD, must be determined. Several expressions are

37 who

available and Garrett has adopted the suggestion of Briffa
measured water droplet velocity decay using a shadowgraph tech-
nique. Other forces, such as buoyancy or gravity, acting on the
droplet, are quite small in comparison to drag and are usually

neglected.

Droplet Heat-Up and Evaporation -~ Calculation procedures for the

rate of phase change of droplets fall into two basic categories:
two-stage and transient heat-up models. In two-stage models, as

30 ¢he droplet is assumed to heat up to the

discussed by Williams,
boiling temperature with no evaporation occurring. Once obtained,
the evaporation rate is governed by expression for the burning rate

qonstént, defined as the time rate of change of the square of the
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droplet diameter. Expressions can be used that account for the
existence of an envelope or wake-type flame. The driving force is
the temperature difference between the droplet and the surrounding
gas phase.

. Transiei t heat-up models such as that of Priem and Heidmann,36
use the difference in fuel vapor concentrations between the droplet
surface and its surroundings as the driving force. The temperature
of the drop is determined from the consideration of heat transfer
to the drop and the fuel latent heat of vaporization.

Though it offers the advantage of ease of computation, the
two-stage models best represent droplets in the high-temperature
zones of the combustor, where droplet heat-up time is quite short
and local fuel concentration is low.

Droplets exist for a significant period of time in the rela-
tively cool, fuel-rich zone near the nozzle. The transient models
better represent such droplets. The transient models are more com-
plex from a computation standpoint, but they reflect the varying
boiling temperature through the droplet life history and are sup-
erior in predicting the evaporation in low-temperature environments
(during an altitude start, for example). §

To evaluate the evaporation rates, fuel properties such as
specific heat and distillation curves are required. For typical
aviation fuels, these properties are usually available in the lit-
erature or can be estimated from basic characteristics such as spe-

cific gravity.38

Turbulent Diffusion of Droplets - In most of the spray models, tur-~
bulent dispersion of dropleis is ignored or introduced in an over-
simplified manner. Some recent studies have adopted a stochastic
approach to model this feature. Recently, Gosman, et al.,35 have
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presented a stochastic discrete droplet method. 1In this method, a
statistically significant number of random droplet samples is
tracked in a Lagrangian framework and the ensemble-averaged
behavior is assumed to represent the turbulent dispersion of drop-
lets. This procedure is likely to be computationally expensive for
real combustors where a large number of samples is required to
obtain statistical averages.

The Garrett Eulerian model includes turbulent diffusion. The
model of diffusion of droplets is assumed to be the same as that of
the gaseous phase; the extent of diffusion is controlled through
the specification of the turbulent Schmidt number for droplet dif-
fusion.
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3.5 Soot Formation and Oxidation

In this paragraph, soot formation and oxidation in combustion
chambers are discussed. A general background on soot emissions is
provided first. Quasi~global expressions for soot formation and
oxidation a. .. described. A description of the influence of turbu-~
lence on soot formation and oxidation is included. The current
approach adopted by Garrett is described next. This approach con-
siders the influence of turbulent fluctuations on soot formation
and oxidation rates.

3.5.1 Background

The particulate emission of primary concern in the combustion
of hydrocarbon fuels is soot, which is evident in the form of
exhaust smoke. The emission of smoke from gas turbine engines is

responsible for the following problems of concern in this program:

o Higher liner temperatures due to increased radiative heat
transfer
o Impingement of carbon on metal surfaces, resulting in

erosion and reduced equipment lifetimes

o Distortion of fuel spray distribution due to carbon
deposits, leading to hot spots.

Recently, attention is being directed toward the combustion of
alternate fuels derived from coal liquids and shale oil. Since the
use of these fuels results in significant increases in smoke.éro-
duction, a better understanding of the physical and chemical pro-
cesses governing soot production is needed.
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. The processes governing the formation and subsequent oxida-
tion of soot are of a particularly complex nature and, as such,
quantitative models of soot production have yet to be developed.
Soot is not an equilibrium produ¢t of combustion and, therefore,
its formation is influenced as much by the physical processes of
atomization, evaporatinn, and fuel/air mixing as by reaction
kinetics. Soot is generally produced anywhere within the combustor
where fuel/air mixing is inadequate, resulting in oxygen-deficient,
high-temperature zones. ’

For the pressures and temperatures normally prevalent in gas
turbine combustors, equilibrium calculations indicate that solid
carbon appears when there is insufficient oxygen to oxidize the
hydrocarbon to CO and H, according to the relation:

CH +

Xo0,— o 6
Hy + 3 0, = xCO + = H, (106)

T

That is, the carbon-oxygen mass ratio for incipient soot formation
is 12:16, or alternatively, the atomic C-O0 ratio is unity. How-

__-~ever, since soot formation is essentialy a nonequilibrium phenome-

non, experimentally, soot is observed at C-O ratios (a) much less

than unity at low temperatures (<2000°K); and (b) greater than

unity at higher temperatures.39

Smoke levels are primarily dependent on

Air/fuel mixing

Temperature

Equivalence ratio

Residence time of air/fuel mixture
+ - Pressure

O 0 0 000 O

Fuel composition.
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These factors influence both the formation and subsequent oxidation of
soot and are dependent on engine operating conditions, details of the
- combustor internal flow field, fuel droplef; characteristics, etc.

3.5.2 Quasi-Global Models of Soot Formation and Oxidation

Since the elementary steps in the formation and oxidation of soot
are not totally understood, Garret% uses quasi~global models that
characterize soot production occurring via a few overall steps. Such
models have been successful in predicting soot production.40

The quasi-global models do not predict the size of soot par-
ticles. With the current state-of~the-art, it is not possible to
predict the size of formation of the soot particles in any practi-
cal flow situation. Therefore, it is assumed that particles are
produced at a known size in any analysis. It may also be assumed

that particles are produced in accordance with a specified size

distribution (e.g., Gaussian).

Tesner, et al.,41 proposed a soot production model that

grouped the complex processes of pyrolysis, nuclei formation, and
soot formation into three rate-limited subglobal steps:

Pyrolysis:

ng=a.Cp, exp (ERTJipartfiams) oo

Nuclei Form&tion:

Rp,f = Mo * (F-gn - g, Nn(part./m?.s) | (108)

Soof: Formation:

F{s,f =m, (a - bN)n (kg;’mB.s) , (109)
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whgte agr E, g, 9o a, and b are constants for given fuel; ng is the
rate of spontaneous formation of nuclei; n is the nucleus concen-
tration; N is the concentration of soot particles; and m, is the
mass of a saot particle.

Khan and Greeves42 proposed a single-step global expression as

a function of the partial pressure of unburned hydrocarbons (PHC),
the unburned equivalence ratio (¢u), and the temperature (T):

dCs 3 3

F - 0.468PHC¢U exp (-40,000/RT) gm/cm®s. (110)

In both the above models, soot oxidation rates are not considered.

Edelman, et al,??

consider both soot formation (Rf) and soot
oxidation (Rox) and express the net soot formation rate as

-AR (111)

where At equals total surface area available for oxidation. The
formdtion step is expressed by a modified Arrhenius type of rela-
tion:

Re = AT“CHC Ozexp( -E/RT) gm/cm s. (112)

where coz; C HC equal the concentration of unburned oxygen and
hydrocarbon (gm/cm ), and where A, a2, a, b, E are model constants.
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40 adopt the semi-

For the oxidation stvp, Edelman, et al.,
empirical formula of Nagle and Strickland-Constable43 for
pyrolytic graphite oxidation; this formula is nonlinear and non-

Arrhenius in Pgo2 and T:

KaPo,
2 Wre Ko P~ (1-9)] A gm/s
AR = R\+m—o— N -
where:

- -1 114
¢= [l +KT/(KBP02)J (114
Ka= 20 exp(-30,000/RT) (115)
Kg= 446x1073 exp (-15,200/RT) (116)
Kr= 1.51x10° exp(-97,000/RT) (117)
KZ= 21.3 exp(4100/RT) ‘ (118)
44

Shock-tube measurements of soot oxidation rates qualitatively
confirm the features of the above formula. With these expressions
for soot formation and oxidation and assuming a single soot part-
icle size of 250&;-Edelman, et al.,40 obtained close agreement of
the predicted soot -concentration (mg/l) with the experimental data
in a jet-stirred reactor. Thus, these expressions assume perfect
mixing. In a gas-turbine combustor, however, regions of unmixed
species will exist, and turbulence will also influence the soot
production rates. As such, modifications to these #:pressions are

required before they can be used for a general 3-D turbulent flow.
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3.5.3 Influence of Turbulence on Soot Formation and Qxida;iqn

453,46 pave proposed a model that accounts for

the influence of turbulent fluctuations on soot production rates.

Magnussen, et al.,

In turbulent flows, chemical reaction occurs when reactants at a
sufficiently high temperature are¢ mixed at the molecular level.
The molecular mixing process is an&logous to the dissipation (¢) of
turbulent kinetic energy k and is associated with the smallest
scales of turbulence. Dissipation is concentrated in highly
strained regions of the fluid occupied by fine structures with
characteristic dimensions of the same magnitude as the Kolmogorov
microscale. The reactants are molecularly mixed in these fine
structures, where reaction occurs. Magnussen, et al., proposed the
following expressions for the mass fraction contained in the fine
structures:

3/4

y*=9.7-@R) (113}

where Rt is the turbulence Reynolds number, and the rate of

transfer of mass per unit mass between the fine structures and the
surrounding fluid is

. -1/4
m= 236 + (R,) ﬁ (120)

The rate of reaction is proportional to X where X is the

fraction of small-structure eddies that are sufficiently heated to

react. It is assumed that X is proportional to the ratio of local
reacted fuel concentration and total fuel concentration. Thus, the
rate of reaction is '

' (121)
Rey = 2.6 RY4 £ X oy (kg/m?.s)
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where

C_ /(1 +1i)
P fu
C or = Product concentration (122)
Cfu = Fuel concentration
Cmin

is the smaller of cf.u and (Coz/i) and i is the stoichiometric
oxygen requirement. The temperature T* of the reacting fine struc-

tures is T above the local time-mean temperature T:
(123)
AHR Cmin
Te=T+AT=T+ Y Tol
where: ‘ P
HR = the heat of reaction
c

p = the specific heat.

. and the surrounding temperature T° is

0 YEX
T =T- AT (—-—-—-—-—-——l -Y*X)~ (124)

Using Equations (107) and (109), the mean rates of nuclei and soot
formation are then expressed as

Ry = Mo, T# * 7%+ X + PIP* 0 1o (I - ¥%:x) - PP° 4 (£ -g) n

=g, n*N*p¥x o/p* - '90 n® NO (I -7%x) p/p°

(125)
and
Rs,f = m, (a ~ b N¥) nxy*xp/p*
+my (@ - b N (1= 7%x)- p/p° (126)
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Finally, the mean rates of nuclei and soot oxidation are expressed

as:
Rn,c =Rg, n/Cfu (purt/m3' s) (127)

e 3
Rs,c = Rfy Cs/Cyy ka/m®s) (128)

Magnussen, et al., used this model to compute the soot concentra-
tions in a tiirbulent C,H, diffusion flame. By adjusting the part-
icle diameter [entered as mp, the particle mass in Equation (109)],
and the constant a_ in Equation (107), good agreement with experi-

o
mental measurements was obtained.

3.5.4 The Garrett Soot-Emission Model

The model adopted by Garrett for computing socot emissions
under NASA Contract NAS3-22542 is described in the following para-
graphs,

The computation of soot emissions involves the solution of two
additional transport equations for the concentrations of nuclei and
soot. To complete the equation specifications, the source terms
and the Schmidt numbers for these two variables are as follows:

The source term for nuclei concentration is expressed as

Rn,f - Rn,c
where Rn'f is given by the smaller of the two values from Equations
’

(108) and (125), R, c is given by Equation (127). Thus, these
14

‘expressions amount to the use of the turbulent reaction rates,

subject to the limitation that they cannot be greater than the
rates under well-stirred reactor conditions.
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The source term in the soot concentration Equation (11l1) is
similarly expressed as:

Rs,f - Rs,c
where Rs £ is given by the smaller of the two values from £quations
¥ .

(112) and (126); R; o is given by the smaller of the two wvalues from
A
Equations (113) and (128).

The turbulent Schmidt numbers o andO'n for soot and nuclei

concentrations are assumed the same as for gaseous fuel (i.e.,
0.9). _

This model has been incorporated into the Garrett 3-D com-~
bustor performance program. Preliminary computations indicate its
abi;ity to make gu;litative predictions.
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3.6 Radiatiqn Modeling

An adequate treatment of radiative heat transfer from combus-
tion products is essential for the prediction of gas-turbine liner
temperatures and heat-transfer rates. For this purpose, Garrett is
at present using the six-flux radiation model based on the
Schuster-Hamaker?’
and 320 on the radiation properties (absorptivities and emissi-

vities) is included in thes2 equations.

approximation. The influence of soot, CO,,

3.6.1 The Flux Methods

In the flux methods, the angular distribution of radiation
intensities is replaced by a number of discrete intensity vectors
in different directions, thus reducing the complexity of the
integro-differential equation of radiation heat transfer. The
energy transfer in each direction is represented by a closed first-
order ordinary differential equation obtained by integrating ‘the
radiation transfer equation over a solid angle. This method was
originated for the 1-D case as the two-flux method, wherein only
two directions are considered. Considerable errors exist in the
two-flux solution in the case of essentially 1-D heat transfer bet~
ween parallel plates; a situation for which the method is supposed-
ly best«suited. This suggests that the two-flux method is not
sufficiently accurate to permit its application to the prediction
of radiant transfer in practical systems. '

48 extended the 1-D fermulation to twwo and three

Spalding
dimensions by formulating the four- and six-flux models. Exten-
sions of the two-flux model to multi-flux and nongrey emitting

49 The four~-flux

absorbing media are also discussed by Siddall.
model applied to an axisymmetric combustor underestimated wall
radiation fluxes, although temperature predictions were reason-

able.50
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The reasons for the inaccuracies in these f£lux methods are (a)
the radiant flux is divided into too few directions (2, 4, or &
being small for many applications or (b) the filuxes in the differ-
ent directions are unrealisticaliy independent of each other.

" Another limitation of the flux models is that their extension to

general curvilinear coordinates for handling complex geometries is
rather cumbersome.

3.6.1.1 The Six-Flux Model Used at Garrett

A six-flux radiation model based on the Schuster-Hamaker

approximation47

that, as pointed cut by Siddal

is used currently at Garrett. It should be noted
149, other flux model approximations
such as Milne-Eddington and Schuster-Schwarzschild can be repre-
sented by the same form of flux equations with constants being

different,

The differential equations describing the variations of the
fluxes along six directions can be reduced to the following three
second-order ordinary differential equations:

: x .
3 G )= aR-B)+ SER*-R"-RY) (129a)
1d r &R T s
r?(mT)"“(R’E)*'j (2R'-R™R%) (129b)
r .
rdd ‘ars rde 'T A" -EI*F "=
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Where the composite-fluxes rR*, RY and R? are defined as

x+ X=
r |
R = 3 (IH— + |r_)

where Topr I, and I,, are the fluxes along the positive directions
of axial, radial, and circumferential directions, respectively;
Ix-' Ir-’ and Ie_ are the corresponding fluxes along the negative
directions.

absorption coefficient, defined as radiation absorbed
per unit length

v
[

scatteking coefficient, defined as radiation scattered
per unit length

0]
L}

4

t
"

black body emissive power = o T

qQ
n

the Stefan~Boltzman constant.

3.6.2 Discrete"Transfer Method

Lockwood and Shah51 have presented a method called the
discrete transfer method. This method is based on the solution of
‘representatively directed beams of radiation within the combustor,
as in the Monte Carlo method. However, in this method the direc-
tions of the rays are specified in advance and they are solved for
only between two boundary walls contrary to the Monte Carlo method
where the ray directions are specified at random and the rays are
tracked to extinction. Lockwood and Shah have shown that this
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method closely reproduces the analytical solution for radiation
between parallel plates (1-D case), radiation in a square enclosure
(2-D), and in a cubic enclosure (3-D). The conventional two- ,
four- , and six-flux models for these cases show larger errors.
This new method is economical, ¢eometrically adaptable, provides
ease of application, and has f%lie possibility of obtaining any
degree of precision (through the specification of number of rays).
The method is designed to be coupled to fluid flow solutions. GTEC
has used this method in its 2-D combustor program.

3.6.3 Radiation Properties

The contributors to radiation fluxes in gas turbine combustors
are: soot, COZ' HZO (vapor), inorganic particles, etc. Only the
influence of soot, C02, and H20 (vapor) 1is discussed here.
Although CO and unburned CxHy contribute to emission and attenua-
tion of radiation within flames, these contributions are localized
and of secondary importance for computing radiative fluxes. The
contributions of Nox and Soz_can be neglected because of their low
concentrations.

The radiation properties of the principal radiating species
including soot, 002, and HZO are significantly nongrey. Conse~

quently, the calculation of the radiation propertiestis a time-

consuming task. However, detailed spectral calculations are
unnecessary since approximate calculations (by means of curye fits)
52

are more convenient and provide good accuracy. Garrett has
employed the approximate curve-fit procedure for the calculation of
radiation properties under NASA Contract NAS3--22542.14

The absorptivity (@) of the gas-soot mixture includes the soot
absorptivity, the absorptivity due to the absorption bands of C02,
and H,0 and corrections for the overlapping of bands.
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Using the spectral data,53 the gas absorptivity is calculated

by taking a summation over the absorption bands of Co, and H,0. 1In
the approximate calculation method adopted by Gartrekt, & simpler
approach is used. The gas absorptivity, ag is written ass4

(T/Ts) (0.6"0‘2;)

g €g

where { = P/(P, + 2))

€g = gas emissivity at a temperature T and path length LTS/T

PorPy = partial pressure of co, and H,0

€g " ec t ey T Aegy
where.

€cr €y = emissivities of Co, and H,0

Aeqy = Overlap correction factor.

€g can be computed using a temperature adjusted version of
Leckner'ss5 approximate overlap correction'Aecw, and approximating
'ec and €y by curve fits of Por Por T and path length to spectral
calculations. 1In the range of interest in gas-turbine combustors,
such calculations agree to within 5 percent of the spectral calcu-
lations and the experimental results. The absorptivity (a) of the

gas-soot mixture is given by

a = + -
as dg Q’s O.'g
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the soot

With ag obtained above, it remains to determine as,
56

absorptivity. This is obtained by the method of Felske and Tien.
This method assugiizs that the complex refractive index of soot is
independent of wavelength and that the soot particle diameter iz
small compared to the wavelength of radiation, so that scattering
is negligible. The spectrally integrated absorptivity can then be
written in a closed~form expression to determine as.

By using the radiative property calculations of the type
described above, Sarofim57 indicated that radiation calculations
can be made with fair confidence, and that the major source of
uncertainty in such calculations is soot concentration, rather than
gas~radiatoh properties.
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SECTION IV
4.0 DESCRIPTION OF THE COMPUTATIONAL SCHEME

The governing differential equations described in Section 3.{
are nonlinear and coupled partial differential equations. In most
practical situations, it is not possible to obtain analytical solu-
tions to these equations and numerical methods have to be used. A
description of the numerical scheme used in the CPM is provided in
Paragraph 4.1. The treatment of the boundary conditions is given
in Paragraph 4.2, and the criteria for convergence and the method
for assessing grid independence are outlined in Paragraph 4.2,

4.1 Description of the Numerical Method

The numerical method used in the CPM's are based upon the

finite difference technique of Patankaw,ss which used the Semi-

Implicit Method for Pressure Linked Equ#tion (SIMPLE) algorithm.
The fea%:sies of this computational procedure include the following:

£ Solution of a sufficiently general single form of differ-
ential equations

o Provision for use with different physical models

o Use of pressure and velocities as the main hydrodynamic
variables

o Use of the pressure-correction technique

o Use of nonuniformly spaced grids

o Use of staggered storage locations
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o Derivation of finite-difference equations by integrating
the differential equations over finite control volumes

o LIiine-by~line solution of the difference equations
The finite-difference equations are derived for a box-shaped

flow domain. Over the region of interest, a number of grid planes
parallel to the two coordinates are placed. For each grid node,

“the finite-difference equations are set up for each of the flow
-variables to be solved. Since the governing equations for axial-

and radial-velocities (Equation 1) contain pressure gradient terms,
these two variables are solved along planes staggered with respect
to the main grid planes described above.

A typical grid node spacing for a general flow problem is
shown in Figure 4.1-1. Finite-difference equations for a node are
obtained by integrating the differential equations over a control
volume enclosing a grid node. For evaluating the convection and
diffusion fluxes through a control volume face, a linear variation
(in the direction normal to the face) of the flow properties is
assumed. For other purposes, a stepwise variation with discontinu-
ities at control-volume boundaries is assumed. Net rate of flow of
¢ into the control volume around a node P (Figure 4. 1-1) by convec-
tion and diffuzion in the x-directlon is

ot U=ty YLy 1oy +ITy, -y Ly 19y,

-ITy -fy L

(130)

where » Ty = Tess0Px/ 6X
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Definingfff s¢dV =5, + Squ , the one-dimensional transport
equation for the variable becomes

[Tx_+(l "fx;_) Lx_":Tx+'fx+ Lx+“'SP] ¢P

= [TX- +({- fx-) LX—”’X- * [TX+ “Ix, LX+]¢X+ * 5y

The linear-profile assumption becomes unacceptable when fX+ Lys is
large compared with Tes because with weighting factor ('1‘X+ - fx+
Ly,) then becomes negative, implying an unrealistic physical pro-
cess through which raising the value of ¢k+ could lower the value
of ¢p. Therefore, it is assumed that if the convective flow rates
(L) are largs compared to the diffusion coefficients {T), the dif-
fusion across the control-volume face is zero and the value of
convected is equal to the value at the node on the upwind side of
the face. With this assumption, the coefficient Ty, - £y, Lys is
replaced by T§+ - Fyy Ly, where

L

T§(+ = [TX+’ - - £X+) Ly Ix4 X+]

Here [al, ays a3] stands for the largest of the three guantities

ajs asy and aj.
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i
Using a similar procedure for the fluxes in the radial direc- ‘
tion, the final finite-difference equation is reduced to )

X- X-* Ay Py, + Ay Py _+S,
(132)

A 2y

The solution of the above equation is obtained by line-by-line
relaxation using an efficient tri-diagonal matrix algorithm. By
this method, a traverse along one direction, for example, the X-
direction, is made with o0ld values for the y-direction nodes.
Using this solution as the best estimate, the y-direction is then
traversed. The solution method adopted is based on the SIMPLE
algorithm of Patankar and Spalding as described in Reference 15.
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Figure 4.1-1., Typical Grid Spacing of the Swirling Flow
Prcblem and Control Value around a Point P.
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4.2 Boundary Conditions

The boundary conditions are enforced by appropriately modify-
ing the finite-difference coefficients at the first interior point
adjacent to the boundary. For the inlet boundaries, the velocity
components, density, and turbulence profiles are either experimen-
tally known or estimated. At the inlet boundary, if pressure is
specified, the pressure correction is set to zero. When the normal
velocities at the boundary poini are specified, the coefficients in
the pressure correction are modified in such a way that the mass
fluxes through the control volume satisfy the overall continuity
equation.

For boundaries of the second kind, where gradients and not the
values of the variables are specified, the program uses one of the
following two approaches, In the first approach, the boundary
value is guessed and continually updated to satisfy the given gra-
dient condition. The second approach breaks the link through the
boundary to all adjoining external control volumes by first arrang-
ing for the finite-difference coefficient connecting the boundary
node to an internal node to be zero, and then inserting the correct
flux at the boundary as a source of diffusion and/or convection for
that internal node.

At the symmetry plane, the convection and diffusion fluxes in
the radial direction are zero. Therefore, the finite-~-difference
coefficients containing these fluxes are set to zero at the axis of
symmetry. For the exit plane, information about some of the vari-
ables is not available. However, since it is the process occurring
in the calculation domain that decides values of the variables that
the outgoing fluid will carry, there is no need for information at
such boundaries. These boundaries are simply treated by neglecting
the diffusion at the exit boundary.
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Boundary conditions at the near-wall nodes are treated in the
manner outlined in Section 3.0 (Equations 7 through 9).

The input parameters depend upon the nature of flow problem
computed. In many of the test cases, initial profiles of turbu-
lence kinetic energy (k) and length scales (L) are not available.
For these cases, uniform profiles of k and L are prescribed at the
inlet and the default values used are

- 2
k = 0.003 Uiv
L = 0.02 Rmax

where, Usv is the average inlet velocity, and Rnax
cross~stream dimension of the flow geometry. If information about
turbulence intensity levels is available at the inlet, appropriate

uniform k values are used at the inlgt.

is the maximum
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4.3 Convergence Criteria

The solution is accepted as the converged solution when the
total mass source error is less than about 0.1 percent of the total
mass flow rate. For all the test cases, the computations were car-
ried out further to ensure that the profiles of the dependent vari-
ables did not appreciably change. For all the test cases con-
sidered in this program, when the solution converged to the accept-~
able limit of 0.001 on the total mass source error, the maximum
mass source error in the computational domain was less than 0.0002,

~The number of iterations required to reach the acceptable conver-
‘gence level varied from problem to problem. In most of the recir-
culating flows, a minimum of 350 iterations were needed to reach
the convergence criterion.

During the computations, the values of each dependent variable
are monitored to ensure that the maximum change in the value of

each dependent variable is a small fraction of the reference value.

When this condition is satisfied, and if the total mass source
error is less than 0.1 percent, plots of all the variables of
interest are obtained. Computations are then continued for another
50 iterations and plots are obtained again. If these plots are
identical to within graphical accuracy, the solutions are accepted
as converged solutions. )

The numerical solution obtained for any given flow prpblem
depends upon the grid density and grid distributions. The solu-
tions are accepted as grid independent if the predicted results are
essentially invariant when the grid density or the grid distribu-
tions are changed. This type of test was performed for many of the
test cases, but these test results will be presented only for a few
of them. For the other cases, the predictions presented in this
report are essentially grid independent. The details about the
grid distributions for each test case will be provided along with
the discussion of the results.
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SECTION V
5.0 DATA BASE FOR BENCHMARK QUALITY TEST CASES

To assess and critique the current models and gensrate a pro-
gram plan to improve their accuracy and usefulness as a combustor
design tool, the assessment of the models was conducted in the fol-
lowing two interrelated steps:

o Assess and critiqﬁe the physical submodels involving the
fundamental processes of combustion, individually, with
data from ideal element tests under well-defined condi-
tions., The physical submodels considered here are tyurbu-
lence modeling, gaseous fuel combustion, spray evapora-
tion and combustion, soot formation and oxidation, and
radiation modeling.

o Assess and critique the model predictions against the
data from advanced gas turbine combustors.

Accordingly, the data base is arranged in two sections: Para-
graph 5.1 includes a description} of the data base from ideal
element tests and Paragraph 5.2 contains a description of the data
from a number of gas turbine combustors.

5.1 Data Base from Ideal Element Tests

A literature survey of recently published work (generally 1970
or later) was conducted to compile a data base necessary for a
benchmark quality test case. Published.literature'related to the
following éubmodels was'reviewed:- , [
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o Turbulence Modeling

o Gaseous Fuel Combustion

o Spray Evaporation and Combustion
o Soot Formation and Oxidation

In the following paragraphs, a data base from ideal element
tests is provided. The ideal tests range from simple entrance
flows in pipes and 2-D channels to more complex flows like the flow
fields behind steps, blockages, and swirling recirculating flows.
These tests are intended to encompass the range of complexities
involved in combustor internal flows. Simple entrance flows are
included in the validation efforts to ensure that the analytical
models can be used to predict simple flows without any modification
to the model. The data base selected has fairly detailed measure-
ments, including turbulence parameter measurements, with estima-
tions on errors.

5.1.1 Turbulence Modeling

In this paragraph, a data base for assessing turbulence models

is provided. The assessment procedure for the k-€ turbulence -

models will consist of comparing the predicted ti?e—mean velocity
components with the corresponding measurements. For the algebraic
and full Reynolds stress models, the predictions of the turbulence
“intensities and cross correlations will also be compared with the
measurements. Some cases involving scalar transport are also con-
sidéred, and these involve predictions of the concentration of a
trace gas (inert) or temperature under heated but inert conditions.

The references reported in the following tables provide infor-
mation about the available measurements reported in the literature.
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These references were selected based upon the extent and accuracy
of the data and the nature of the geometry of test conditions. The
references selected are presented in the form of increasing order
of complexity of the flow field in the form:

Simple Flows (Boundary Layers, Jets, Mixing Layers, etc.)
{2-D Parabolic) - Table 3

Streamline Curvature Effects (Curved Ducts, Curved
Boundary Layers, etc.) (2-D Parabolic) -~ Table 4

Recirculating Flows (Nonswirling) (Both Un¢~nfined and
Confined) (2-D Elliptic) - Table 5 s

Swirling Flows ({With and Without Recirculation) (2-D
Elliptic/2-D Parabolic) - Table 6

Scalar Transport - Table 7.

From the references provided in these tables, benchmark test
o cases were selected, as described in Sections 6.0, 7.0 and 8.0.
These cases were used to evaluate the turbulence and kinetic model

5 ¢ e
| predictions.
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5.1.2 Gasecus Fuel Combustion

In this paragraph, a data base for assessing gaseous fuel com-
bustion models is provided. The assessment procedure consists of
comparing the predictions of time-mean velocity components, temper-
ature, concentrations of species (unburned fuel, CO, COZ’ H2' HZO’
02, Nz) against the experimentally measured values of these gquanti-
ties. These quantities were selected because they are of interest
in gas turbine combustors. Reliable measurements of these quanti-
ties are available, and they are a good indication of the predic-
tive capability of the gaseous combustion model consisting of the
turbulence/chemistry interactions and the hydrocarbon reaction
mechanisms. The assessment will be done for different flow types:
turbulent/laminar, premixed/diffusioﬁ, one/two/three~dimensional
flow, ?arabolic/elliptic, swirling/nonswirling.

In accordance with the assessment procedure, the data base is
categorized into four sections: ’

o Laminar Premixed Flames - Table 8
o L.aminar Diffusion Flames - Table 9

o Turbulent Premixed Flames - Table 10
o) Turbulent Diffusion Flames - Table 11.
In each of these tables, the data is arranged in order of increas-

ing complexity, starting from 1-D parabolic to 3-D swirling
elliptic flows.
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During the search for compiling the data base, several publi-
cations were encountered wherein the boundary conditions or other
information required for modeling were not clearly or completely
stated. Such cases (e.g., References 111-123) have not been
included here. Measurements of quantities not related to the
assessment procedure given above have also been excluded., The data
base is concerned with the measurements of quantities listed above
for steady gaseous hydrocarbon flames.
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5.1.3 Spray Evaporation and Combusticn

In this paragraph, a data base for assessing spray evaporation
and combustion models is provided. The assessment procedure will
consist of comparing the predicted spray trajectory, droplet con-
centrations, velpncities and size distribution, temperature, and
concentrations of species (unburnt fuel, CO, co, H,, H,0, 02, N2)
against the experimentally measured values of these quantities.
The available data on spray evaporation and combustion is listed in
Table 12. The predictions of these quantities is an indication of
the accuracy of the various features of the spray model:

Q The prediction of spray trajectory, droplet concentra-
tions, velocities, and size distribution under non-
burning and nonevaporating conditions reflects on the
accuracy of the spray dynamics model, which includes the

modeling of the drag forces between the spray and the gas
phase.

o The prediction of the droplet concentrations and size
distributions along with the mixture fraction under non-
burning (but evaporating) conditions serves to test the
droplet heat-up and evaporation models.

;

o  Finally, the prediction of droplet concentration and size

dlstrlbutlon along with gas temperature and composition

serves to test the validity of the spray combustion
model.

Thus by assessing the predictions of the quantities listed
above, all features of spray evaporation and combustion involving
interphase momentum (spray dynamics, drag), teat (droplet heat-up)

and mass (droplet evaporation and combustlon) transfer are tested
individually and jointly.
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/ftie data base is arranged in order of increasing flow complex-

ity. Sgurces in which all boundary and initial conditions required
for modeling were not completely or clearly stated have not been
included in the data base (e.g. References 156-170). It should be
noted that complex two-phase slip models as used at Garrett require
detailed information specifying the initial conditions at the fuel
injector; initial drop size distribution, initial velocity distri-
bution, etc. This information is generally not available and

therefore has to be estimated from the available injector charac-
teristics. '
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5.1.4 Soot Formation and Oxidation

In this paragraph, a data base for assessing soot formation
and oxidation models is provided. The assessment procedure will
consist of comparing the predicted soot concentration, temperature,
concentrations of species (unburnt fuel, CO, coz, Hz, Hzo, 02, Nz)
against the experimentally measured values of these quantities.
The comparison of predicted and measured soot concentrations is a
direct indication of the accuracy of the soot model. Temperature
and gas composition are affected by the presence of soot to an
extent depending on its concentration. Therefore, assessing the
accuracy of the predictions of temperature and gas composition
serves to indirectly assess the ‘soot model.

The data base for the soot models is rather inadequate since
very few measurements under controlled conditions have been
reported in the literature. The reason is the difficulty in accur-
ately measuring soot concentration profiles in a combustor. Quite
ofﬁen, only the exhaust smoke concentration is measured and soot
profiies have been measured in only simple flames.

As in the preceding sections, several sources of data (e.g.
References 185-194) were found that were not suitable for model
assessment due to indomplete specification of the boundary and
initial conditions. These have not been included here. Also, mea-
surements related only to gas turbine type fuels have been con-
sidered, since it is practically impossible to validate the model
and obtain a set of model constants for all types of hydrocarbons.
The data base for soot formation and oxidation is presented in
Table 13.
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5.2 Data Base from Garrett Gas Turbine Combustors

A number of gas turbine combustors have been mapped at Garrett
over the last ten y#ars. A brief description of the Garrett data
base is given in the £cilowing paragraphs.

5.2.1 Can Combustor Mapping

ped207 in 1973 for comparison with the k-€¢ turbulence model. 4

schematic of the burner along with the flow split is shown in Fig-
ure 5.2-1. A calibrated three-hole wedge probe and liquid micro-
manometer were used to measure the radial distirubtion of the yaw
angle, static and total pressures at different axial stations.

As part of model validation under the USARTL Design Criteria
Program, another can combustor nonreacting flow was mapped at dif-

ferent throughflow rates. This combustor was filled with 21 mea-
surement ports., '

A calibrated fiwe-hole pyramid probe was traversed across the
can combustor at three circumferential locations and seven axial
stations. Four traverses were made in the primaiy zone, seven in
the intermediate, and ten in the dilution zone. The probe mounts
and the test conditions are shown in Figure 5.2-2. .

Reactihg flow mapping was accomplished on a similar can com-
bustor, shown in Figure‘5.2-3. Radial profiles of CO, C02, Nox,
and unburned hydrocarbons were measured at avial stations 6.0, 8.5,
10.4, 12.9, 15.4, 18.8, 21.3, and 26.2 cm downstream from the fuel
nozzle face. Five circumferential stations were mapped to deter-
mine the profile variations in the circumferential direction. The
mapping was conducted for both gaseous (natural gas) and liquid
fuels {(Jet A) over a wide range of operating conditions. The fuel
nozzles used for each fuel are shown in Figure 5.2-4.
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A nonreacting can combustor with swirlezs at the dome was map-
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Figure 5.2-1. Nonreacting Swirling Combustor Flow validation. "
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UPPER PROBE 1

B\

ACTUATION FOR B
5HOLE PYRAMID
PROBE

& LOWER PROBE
{ sTor

INLET PT PROBE
(3 PLACES) -

PROBE PASSAGE

o~

INLET Ty PROBF S :
(2 PLACES) e o

. %

© TEST CONDITIONS

P3 T3 Wa3 AP
COND # (ATM) (K) (¥g/s) 4
(%)
1 10.00 288 1.818 3.25
2 10.03 288 2.263 5.01
3 9.98 288 2.736 7.39

Figure 5.2-2. Cold Flcw {"an Coumhustor Mapping Setup and
Test Conait oi.s.
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REACTING FLOW CAN COMBUSTOR GEOMETRICAL DETAILS

NO. OF
ORIFICE TYPE ORIFICES SIZE (cm)
DOME LOUVERS 30 0.36
PRIMARY 6 1.12
DILUTION 6 1.42
COOLING SLOT LIP
#1 30 0.44
#2 30 0.48
#3 30 0.48
#4 30 0.48

Figure 5.2-3. Can Combustor for Reacting Flow Mapping.
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GEOMETRIC AXIAL DISTANCE
AREA, cm2

3.02
5.89
9.53

4.6

5.43
5.43
5.43

(cm)
9.09

17.21
5.05

12.20

20.59
29.67

145

BB i st




Figure 5.2-4.
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A water/steam-cooled stainless steel emissions probe with ten
individual radial sampling points was used for the combustion emis-

sions mapping.

5.2.2 Annular Combustor Mapping

A reverse-flow premix/prevaporizing (PM/PV) annular combus-
tion system that is compatible with the Garrett TFE731-2 turbofan
engine envelope was designed and tested to demonstrate combustor
technology capable of meeting the 1979 EPA emission standards for
TI class engines as part of the NASA Pollution Reduction Technology
Program. To better understand the performance characteristics of
this combustion system, internal radial profiles of gaseous emis-
sions were measured in an atmospheric test rig.

The piloted PM/PV combustion system incorporates two axially
staged burning zones, as shown in Figure 5.2-5. The radial pro-
files of CO, C02, UHC, and NOx were measured at four different
axial-stations and six circumferential () planes within the main
combustion zone. A water/steam-cooled probe was used to obtain
radial profiles. The internal emissions mapping was conducted at
one atmosphere in a combustor rig without the transition liner.
The effect of different parameters including combustor inlet tem-
perature (T3), overall fuel/air ratio, and fuel-flow splits between
the pilot and PM/PV combustion zones on the emissions profiles were
studied. The mapping was conducted with propane as PM/PV fuel to
simulate complete evaporation; however, Jet A fuel was used for the

pilot.

Information concerning the internal flow field of a TFE731
production combustor (Figure 5.2-6) was provided through measure-
ments of CO,, CO, UHC, and NO, taken inside the combustor primary,
intermediate, and dilution zones at atmoshperic test conditions.
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AXIAL STATION A

—

Figure 5.2-5. Axially Staged Burning Zones of the Piloted
PM/PV Combustion System.
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Figure 5.2-6. Emission Sampling Probe Stations Inside the
TFE731 Combustor.
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The emissions probe used for the internal mapping was the same
as the one used earlier to map the PM/PV Concept 3 combustor. The
eight individual sampling ports of the probe were manifolded
together to obtain only averages in the radial direction. The mea-
surements were taken at different axial stations (as shown in Fig-
ure 5.2-6) in the primary and secondary regions.

Detailed internal gaseous emissions and temperature measure-~
ments inside the Uprate T76 t¢ombustor primary zone have been con-
ducted at various axial locations.

A single-point, water-cooled, emissions probe with an end cap
(Figure 5.2-7) was designed for use in the primary =zone. This
probe is intended to separatc relatively large liquid fuel droplets
from the gas sample. The end-cap feature was also used in the con-
struction of a ceramic rédiation shield for the aspirated thermo-
couple used to measure primary zone temperatures.

Emissions samples were taken at five dicferent axial positions
from 1.016 to 6.35 cm from the dome. Temperature measurements were
taken from the dome to the dilution zone. The measured sector
extended over 36 degrees and was centered on a main fuel nozzle.
Seven circumferential stations were selected to correspgnd with
areas of carbon deposition in the Upra}e T76 combustor.

Most of the data was taken at an altitude idle-engine condi-
tion and also at the sea-level design condition. Two combustors of
the same part number were measured. Fuel/air ratios nearly twice
the stoichiometric values were measured at the discharge of the
primary zone for the design condition, indicating poor primary zone
mixing.
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Figure 5.2-7. Schematic of Emissions Probe and Measurement
Locations for Fuel/Air Rate Profiles in the
UT76 Combustor.
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SECTION VI

6.0 SIMPLE FLOWS

The results for the benchmark test cases (shown in Table 3)
are presented in the following four categories:

Model evaluation for simple flows

Model evaluation for complex nonswirling flows
Model evaluation for swirling f£lows

3-D jet-mixing flow validation

O 0 0 O

These categories are selected in increasing order of complexity
and, for each category, the results will be presented for nonreact-
ing and reeacting flows. In this section, discussion of results
and model evaluation for simple flows are presented. To present the
results, the predictions will be shown by lines and the data will
be represented by symbols throughout this report.

6.1 Flow Over a Flat Plate

One of the benchmark test cases selected from the assembled
data base is the flow over a flat plate, for which measurements
were made by Watts and Brundrett67. Their test plate was 2.44 m
long with boundary layer trips placed near the leading edge to make
the boundary layer fully turbulent. The mean velocity and the tur-
bulence velocity fluctuations were measured with a hot-wire probe
at x = 0.244, 0.462, 0.8466, 1.163, 1.4656 and 2.2743 m. The free
stream velocity for this test case was 20.8 m/s. A schematic of

this flow geometry is shown in Figure 6.1-1.
Computations for this case were made using the Garrett 2-D

parabolic code, and predictions were obtained with the following
models:

RECEDING PAGE BLANK NOT FILMED | 153




cemn e

o AEIRR AL, &b tumstate

o) Standard k- € model

o Standard k~¢ model with near-wall low Reynolds number
correction

o Algebraic stress model (ASM)
o ASM with low Reynolds number correction

For all these cases, the initial conditions were applied at x
= 0,244 using the measured profiles. One hundred cross~-stream grid
points were used in these computations. The grid distributions
were selected so that the nodes were closely spaced near the wall
and are farther apart near the edge of the boundary layer. For the
standard k—-€ model, the wall function treatment outlined in Section
4.2 was used to specify the wall boundary conditions.

The predicted mean velocity profiies using the standard k-e€
model are shown in Figure 6.1-2. This figure shows that the agree-
ment between data and predictions was poor. Problems in this com~
putation were associated with the wall function approach for pre-
scribing the boundary conditions at the near-wall nodes.

J

One way to circumvent the applicaticn of the wall functions is
to apply low Reynolds number corrections to the k and € equations
that will enable k and € to be zero at the wall in a consistent
manner. From the survey of literature for low Reynolds number cor-
rections, the model of Chien17 was selected for these computations.
In Chien's model, the source terms and exchange coefficients in the
k and € equations have been modified. The governing equations for
k and €, still retain the form shown in Equation (1). The differ-
ence arises in equations (2) and (4). The modified terms in
Chien's model are
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fy, = 1.0 - exp (-0.0115 yH),

+_ Puty
7R
2 2
f2= l¢0~002~

[\6‘“

€

E=-2y — exp [-0.5 y+]
Y

Teff,e = (14 B/

Here, uy, is determined by using the linear
wall,

us=u¥y , 0sy <115

(133)

(134)

(135)

(136)

(137)

(138)

(139)

part of the law of the

(140)

With the modified terms in the k and € equations, the wall boundary

conditions at the wall (y=0) are:

k=0

155

o



It should be recognized that for improving near-wall solution
accuracy with Chien's modification, one must employ a number of
grid points inside the viscous sublayer. This is not always pos-
sible for elliptic flows. Consequently, in this report, Chien's
corrections are applied only for parabolic flows. 1In all the com-~
putations with Chien's correction, approximately 10 nodes were dis-
tributed in the viscous sublayer.

A comparison between the data and the predicted results using
Chien's correction are shown in Figure 6.1-3. A significant im-
provement in the agreement and predictions is obtained with the low
Reynolds number correction over the wall function approach in the
standard k- € model.

Figure 6.1-4 illustrates the predicted results for mean veloc-
ity using the algebraic Reynolds stress model. In the ASM the
value of the coefficient CD'is computed from equation (23) while
the standard k-€ model assumes a constant value of Cp- This param-
eter, CD’ is used for calculating the turbulence diffusion rate.
Figure 6.1-4 shows that the ASM is in excellent agreement with the
data of Watts and Brundrett. Application of the low Reynolds
number correction on the ASM does not appreciably improve the mean
velocity predictions. These results are presented in Figure 6.1-5.
However, the application of Chien's low Reynoldsynumber correction
substantially improves the prediction of turbulence kinetic energy
components. A compirison of the predicted turbulence kinetic
energy profiles at x = 1.8735 m using the four models are presented
in Figure 6.1~6. The predicted turbulence kinetic energy values,
using the standard k-€ model, are slightly higher than the measured
values. The peak k value near the wall is significantly higher
than the measurements. When Chien's low Reynolds number correction
is applied to the k-~ ¢ model, the near-wall kinetic energy values
are in better agreement with the data. The ASM predictions for k
are also higher than the data, but is slightly better in comparison
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with the k-¢ model predictions. The application of the Jow
Reynolds number correction significantly improves the predicted k

values.

A comparison between data and predicted time mean fluctuating
velocity components at x = 1.8735 is shown in Figure 6.1-7. The ASM
predicts much higher peak values for u', v', and w' components com-
pared to the data, Application of the low Reynolds number correc-
tion yields good agreement with the data.

Based on the comparison between predictions and data on a flat
plate turbulent boundary layer, the following conclusions can be
made: ’

o) The standard k- € model gives qualitatively good results.
Significant improvements in mean velocity profiles are
achieved by applying Chien's low Reynolds number correc-
tion to the k-¢ model (low Reynolds k-¢).

o Algebraic stress model results are as good as the low
Reynolds k-€ model in regard to mean velocity profile.

o The low Reynolds number correction is required for
achieving good near-wall turbulent kinetic energy pro-
files with both k-€ and ASM models.

(o) Individual fluctuaéing velocity components are reason-
ably well correlated by ASM except in the viscous sub-
layer, where significant improvements are obtained by
applying the low Reynolds number correction.

157

N

-
54

kWi

P B
e SROLR S

waly

-



1538

ORVMNAL PAGE IS
OF POOR QUALITY

WATTS AND BRUNDRETT

FLOW OVER A FLAT PLATE

ol UAIR

L=023 M
(Ugip = 208 M/8

L=244 M
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6.2 Plane Couette Flow

The plane Couette flow is a well defined f£low for which anal-
ytical solutions and good experimental measurements are available
for evaluating the turbulence models. The test data selected for
validating the models in this report were obtained by El Telbany
and Reynolds208 in a test setup shown schematically in Figure
6.2-1. In this setup, the bottom wall was stationary and the top
wall was moved at a velocity of 17.08 m/s, which corresponds to a
Reynolds number of 12,640. The distance between the walls was
44 mm,

Computations for this flow were made with the standard k-¢
model and the algebraic stress model using a 2-D parabolic code.
The standard k-€¢ model predictions and the data for mean velocity
are shown in Figure 6.2-2. The agreement between data and predic-
tions is very good. The non-dimensionalized Reynolds shear stress
profile predicted by the standard k-¢ model is also in good agree-
ment with the data, as seen in Figure 6.2-3. However, the profile
of Reynolds stress normalized by the turbulence kinetic energy pre-
dicted by standard k-€ model is not in agreement with the data
(Figure 6.2-4). 1In the standard k-~-¢ model, in the regions where
the shear stréss is a constant, the turbulence kinetic energy is
also a constant. However, the data shows a gradual reduction in
the k values away from the wall with the minimum value at the plane
of symmetry. Consequently, the predicted uv/k profile is contant
in the core of the flow, while the data shows a gradual increase in
its value away from the wall. It is possible to match the predicted
and measured values of uv/k at the plane of symmetry by increasing
D’ from 0.09 to 0.144. A signif-
icant improvement is obtained in the uv/k profile, which is shown
in Figure 6.2-5. However with CD = 0.144 used in the standard k-e¢
model, the predicted mean velocity profile was not in agreement

the turbulence model constant, C

with the data, as seen in Figure 6.2-6.

165

o



The ASM predictions are illustrated in Figures 6.2-7 through
6.2-13. The comparison between ASM prediction and the data for
mean axial velocity is shown in Figure 6.2~7. The agreement
between the two is very good. The ASM prediction for uv, normal-
ized by the wall shear stress is in good agreement with the data, as
shown in Fiqure 6.2-8. However, when the Reynolds stress profiles
are normalized by the local turbulence kinetic energy, shown in
Figure 6.2~9, the predicted profile underestimates the wvalues in
the core of the flow. However, the ASM predictions for the center-
line uv/k values are closer to the data than that predicted by
standard k-€ model. A very similar profile is obtained for the
correlation coefficient, uv/(u'v'), which is shown in Figure
6.2~-10. These two figures demonstrate that the ASM slightly over-
estimates the turbulence kinetic energy components.

The ASM prediction for the axial turbulence intensity, u', is
shown in Figure 6.2-1l. The predicted peak u' value is slightly
smaller than the data. However, in the core of the flow, the ASM
predictions are in good agreement with the data. The predicted and
measured cross~stream turbulence intensity profiles are illus-
trated in Figure 6.2-12. The predicted v' values are about 20 per-
cent higher than the data. The predicted w' values are also higher

than the data by about 15 percent in the region near the plane of
symmetry as shown in Figure 6.2-13.

The Couette flow calculations may be summarized as follows:

o} The standard k-~¢ model predicts the mean velocity profile
accurately, but underpredicts the centerline uv/k value
by about 20 percent.

o When the centerline uv/k value is matched with the data,

(using CD = 0.144), the predicted mean velocity profile
is in poor agreeilent with data.
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The algebraic stress model correctly predicts the mean
velocity profile and underpredicts the centerline uv/k,
but the centerline uv/k values are in better agreement
with the data than the standard k-e€ model. The basic
reason for this deficiency is because of the overestima-
tion of v' and w' by the ASM. Overall individual turbu-
lence components are predicted well by the ASM.

167




25 s M L T e SRS L+ e s s s

168

_ORIGINAL PAEE (U
OF POOR QUALITY

EL TELBANY AND REYNOLDS

COUETTE FLOW

A I . w
Y 2

Figure 6.2-1.

2H = 0.044 M
Uy = 17.08 W/S
Re = UyH/v = 12640

o T

.
7

1

P LA B}
. .- oo

Geometry of Plane Couette Flow.

B it s b



ORIGINAL PAGE [g
OF POOR QUALITY

(1] T
& ATELBANY DATA A“y"&
28 | ="~ CALCULATIGNS #af
A
b8
'}
’%/"dh
15 ] =3
el
+
u *
Id
’I
1. L ,’!
A
L
5 ,g{A
1e
. 1 1 ' i 1
.5 1 1.5 2 2.5 3 3.8
L0510 (y)

Figure 6.2~2.

Comparison Between k-e¢ Predictions and Measured
Couette Flow Axial Velwmtity Profile (u4 versus

v,) .

o\ coc

:
:
0.6 4
1
H
:
0.4 4
:

H
:
9.2 i
i
i

Ta avenpany parta

6.8 ]/

""" CALCULATIONS

Figure 6.2-3.

P ¥
® e.i 9.2 0.3 @4 0.5 0.6 5.7 0.8 0.9 1

V 1 T L i | U

y/4

Comparison Between k-¢ Model Predictions and
Measured Shear Stress Profile (normalized by
wall shear value).

169

AT IR




Figure 6.2-4.
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6.3 Developing Flow in a Two-Dimensional Channel

One of the simple flows considered for validating the k—€ tur-
bulence model was the developing flow in a two-dimensional channel.
Analysis of the entrance flow problem provides a means of evalu-
ating the accuracy of the numerical scheme. Detailed mean flow
measurements in the entrance regimn of a parallel plate were made
by Emery and Gessnerﬁs. The geometry of their test setup is shown
in Figure 6.3~1. Predictions for this flow were obtained using a
2-D elliptic code with the standard k—-¢ model with 2200 grid nodes.
Computations were performed until the total mass source error was
less than 0.0l percent. Comparison between predicted and measured
axial velocity variation along the centerline of the channel is
shown in Figure 6.3-2. The difference between the two results is
comparable to the measurement accuracy. Figure 6.3-3 illustrates
the predicted and measured profiles of the axial velocity component
at different axial stations. The agreement between data and pre-
dictions is very good. '

The predicted and measured wall shear stress distributions are
presented in Figure 6.3-4. The predictions and the measurements
are within about 7 percent of the data, which is within the accur-
acy of the wall shear stress measurements. The agreement between
measured and predicted results demonstrates that the standard k-¢€
model is sufficiently accurate for predicting mean flow field in a
two-dimensional channel.
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6.4 Developing Pipe Flow

The next benchmark test case considered was the developing
flow in a circular pipe. The test case selected for this problem
corresponds to the measurementg by Barbin and Jones®®. The geome-

try of their test setup is shéwn in Figure 6.4-1.

The bulk flow velocity at the inlet in the test case was

33.174 m/s and the Reynolds number, based upon the bulk velocity,
 was 388,000. The mean velocity measurements were made using pilot
tubes and the turbulence velocity components were measured using an
x-wire probe. Computations for this case were made using a 2-D
parabolic program. The computational domain extended from % = 0.3
meters to x = 8.1 meters in the axial direction and from r = 0 to r
= 0.1 meters in the radial direction. Along the axis of the tube,
symmetry boundary conditions were specified, and along the pipe
wall, standard wall functions were used to specify near-wall bound-
ary conditions. In the computations,'loo grid nodal points were
used in the radial direction. At x = 0.3 meters, the measured pro-
files were used as initial profiles. Computations were made with
standard k-€ model and ASM.

Comparison between standard k-€ model predictions and the data
of Barbin and Jones for mean axial veloci%y is shown in Figure
6.4-2. The mean velocity profiles are nondimensionalized by the
average bulk velocity, Uy, = 33.17 m/s. The predicted mean velocity
profiles are in very good agreement with the data.

The mean axial velocity profile comparison between the data
and ASM predictions is presented in Figure 6.4~3. The ASM predic-
tions are in good agreement with the measurements. The predicted
and measured root mean square. (RMS) axial velocity f£luctuations,
u', are illustrated in Figure 6.4~4. The ASM correctly predicts
the axial turbulence intensity near the axis of the pipe. Near the
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wall of the pipe, predicted peak values of u' are apparently higher
than the data. However, the¢ measurements near the wall do not have
sufficient resolution. The boundary conditions near the wall were
specified using wall functions, which have been shown (Paragraph
6.1) to overestimate the peak turbulence kinetic energy in the case
of a flat-plate boundary layer. By using an improved near-wall
model, improvements in the peak turbulence intensity can be
obtained. The comparison between the predictéd and measured cir-
cumferential turbulence intensity component, w', is illustrated in
Figure 6.4-5. These profiles have characteristics very similar to
the u' profiles. The w' peak values are slightly overestimated.
The near-wall model deficiencies are responsible for the overesti-
mation of the peak w' values.

The results presented in this paragraph demonstrate that the
k—-€ and ASM accurately predict the mean velocity profiles and that
further improvements in turbulénce structure and pressure drops can
be achieved with an improved near-wall model.
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6.5 Fully Developed Pipe Flow

The fully developed pipe flow is another case of simple flow
where the turbulence mcdels can be evaluated. The test measurement
selected for this case was that of Lauferzog, at a Reynoclds number,
Re’ of 500,000. The geometry of the flow field is illustrated in
Figure 6.5~1. Computations for this case were made with a 2-D
parabolic program, starting with a plug flow profile at x = 0. The
calculations were performed up to x = 10 meters, where fully devel-
oped flow field was established. Predictions were obtained using
the k—-€ model and the ASM with Chien's low Reynolds number correc-
tion. A comparison between Laufer's data and the k- ¢ model predic~
tions are shown in Figure 6.5-2. The agreement between data and
predictions is very good. The predicted and measured turbulence
kinetic energy profiles are shown in Figure 6.5-3. The standard
k~€ model predicts a higher value of peak turbulence kinetic energy
near the wall compared to the data. Similarly, at the centerline,
the k- € model predicts about 40 percent higher value for k than the
data.

The ASM prediction for mean velocity profile is shown in
Figure 6.5-4. ° The predicted results and the data are in good
agreement. The ASM prediction for turbulence kinetic energy is
illustrated in Figure 6.5-5. The predicted peak as well as the
centerline values of the turbulence kinetic energy are in good
agreement with the data. The ASM predicts a faster decay of turbu-
lence kinetic energy (k), away from the wall, but the predicted
variation of k in the core of the flow is slightly smaller than the
measurements.

The ASM predictions for axial turbulence intensity, u', and
the data are presented in nondimensional form in Figure 6.5-6. The
predicted u' peak value near the wall is slightly smaller than the
data. However, the agreement with data in the core of the flow is
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very good. The predicted and measured v' profile is shown in
Figure 6.5-7. The predicted profile is in good agreement with the
data. However, the peak value of v' predicted by the model is
slightly higher than the data. The predicted and measured w' pro-
files, shown in Figure 6.5-8, are in good agreement in the entire
flow field. At the axis of the pipe, the predicted w' value is
slightly higher than the data. The comparison between data and
predictions for the Reynolds shear stress, uv, is shown in Figure
6.5-9. The data and predicted values are in excellent agreement.

The low Reynolds number k-€ model predicts the mean velocity
profiles in a fully developed pipe flow accurately. It predicts a
higher value of turbulence kinetic energy near the wall and at the
centerline compared to the data. The ASM predicts the mean veloc-
ity profile accurately and significantly improves the turbulence

L

- € model results.
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Figure 6.5-1.
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-Re = UgD/v = 500,000

Geometry of the Pipe Flow.
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6.6 Two-Stream Mixing Laver

Another benchmark test case selected from the data base for
turbulence model validation is the flow in the mixing layer between
two streams. Measurements for this case were made by Saiy and
Peerless60 using a hot-wire probe and pitot tubes. A schematic of
their flow test setup is shown in Figure 6.6-1.

Computations for this case were made using the 2-D Parabolic
Program. Since this flow field does not involve a wall boundary
layer, low Reynolds number correction is not needed. Predictions
for this case were obtained with the standard k- € model and the
ASM. Initial conditions for these computations were applied at x =
12.5 cm using measured data. A total of 100 cross-stream nodes
were used in the computations. The nodes were closely distributed
in the mixing region where gradients are higher and are sparsely
spaced in the outer regions. For the test conditions, the veloc-~
ities of the two streams are;

Ug = 16.5 m/s; U, = 38.37 m/s

The predicted mean velocity and turbulence kinetic energy pro-
files using the s&andard k- € model are presented in Figure 6.6-2.
The predicted mean velocity profiles are in very good agreement
with the measurements. The predicted turbulenée kinetic energy
(TKE) values are slightly smaller than the data. However, the
width of the shear layer is correctly predicted. Overall agreement
between k-¢€¢ model predictions and data is good.

Figure 6.6-3 shows the comparison between data and predictions
obtained from the algebraic Reynolds stress model for the mean vel-
ocity. The ASM predictions, similar to the k—-¢€¢ results, are in
very good agreement with data. A typical comparison between data
and predicted turbulence velocity compoﬁents at x = 15 em and x =
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20 cm is presented in Figure 6.6-4. The u' profiles are in very
good agreement with the data. The predicted and measured v' data
are in good agreement. A similar conclusion can be drawn for the w!
component, with the exception that the predicted w' peak values are
slightly larger than the data.

The measured data of v' and w' indicate that the peak values
occur at y»o; i.e., they have shifted toward the low-velocity
stream side of the mixing layer. The ASM model predicts them to lie
along y = 0.

Figure 6.6-5 illustrates the comparison between data and pre-
dicted turbulence kinetic energy and shear stress (uv) profiles at
x = 15 cm and x = 20 cm. The predicted turbulence k-¢ values are
slightly smaller than the data. This is consistent with the
results shown for the k-¢ model in Figure 6.6-2. The predicted uv
profiles are in good agreement with data oxcept for a slight dis-
crepancy at y = o. ‘

Major conclusions from the mixing layer work reported here
ares

(o} Both k- and ASM models give equally good mean velocity
profiles as well as turbulent kinetic energy profiles.
The measured peak values of the turbulent kinetic energy
(KE) are slightly higher than predictions; the ASM gives
a little better correlation.

o The ASM model gives good correlation for the fluctuating
velocity components (u', v', and w') as well as shear

stress u'v'). There is slight discrepancy in regard to

the radial location of the v' and w' peaks.
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TWO STREAM MIXING LAYER
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Ug = 107 M/8
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TURBULENCE INTENSITY = 0.6%

Figure 6.6-1. Two~Stream Mixing-Layer Setup of

Saiy and Peerless60,

196

=

v T 2y

L R

T

S T S

N ~pgp v ST

Apregmm et g e 4

» s

et i ATV e e T

io

¥t g v

ot oy e
-

e e

o TS T i
DR ‘
. o ®E D

pyTT



-
@ ¥=12.5 CK
o )
o
v
o
|84
[
=8
-
P
-
[~
o o
] 1 1
0,00 25,00 50.00
U~VEL, M/SEC
>
o o*=17.5 CH
(2]
az
u
’—-
o
=S
o
>
-
o
¢ — ]
0.00 25,00 50.00
U-VEL, M/SEC
" .
- ¥=15 CM
[~]
o
o
|58
We o
=9 ] 8
i o
>—
o~
[=]
o
] i | 1 i
0.00 10.00 20.00 30.00
TKE, M2/82

ORIGINAL PAGE i
OF POOR QUALITY

0.04

- o X=15 CM
o
w
o
w
e
Zg
o
S
-
< ]
< T &—
6.00 25,00 50,00
U-VEL, M/SEC
Y
. Y=20 CM
°"|
g
(7]
oo
i
e
ul o
=S
o
o
S o
? T 2
0.00 25.00 50.00
U-VEL, M/SEC
~
& X=20 CM
(-1

0.00 0.00 20,00 30,00
TKE, M2/82

Figure 6.6-2. Mixing Layer Mean Axial Velocity and Turbulent
Kinetic Energy (TKE) Profiles Predicted by the
Standard k-¢€ Model.

197

I
+

.

P
<.
3

113

T Dok
v

%

)‘“ TR L e
-y w0




ORIGIRIAL PAGE 19
OF POOR QUALITY

S S
e 0X'|2e5 CM o g %15 CM
o o
o
n 7
o o
L w
~ —
23 2
o o
> >
-4 b4
> > )
< 7 ° ] ST T &—
0.00 25.00 50.00 0.00 25.00 50.00
U-VEL, M/SEC ‘ U-VEL, M/SEC
p4 S
o 0)("17.5 CMk o 8)(-20 CcM
o
n o
e o
w L
e -
=3 e
S <"l
> -
3 by s
S T 1 ? T 2
0.00 25.00 50.00 0.00 25.00 50.00
U-VEL, M/SEC U-VEL, M/SEC

Figure 6.6-3.

Mixing Layer Mean Axial Velocity Profiles Predicted
by the Algebraic Stress Model (ASM).

ven e




Y, METERS

ORIGHIAL PAGE 1T
OF POOR QUALITY

X=15 CM

0.02

0.00

Y, METERS
1

METERS

Y,

2{00 4{00
U-PRIME, M/SEC

X=15 CM

METERS
0.00

.Y,

Y, METERS

5100 4{00
V-PRIME, M/SEC

Xe15 CM

METERS
0.00

Y,

~0.02

0.00

Figure 6.6-4.

2t00 ;100
W-PRIME, M/SEC

Mixing Layer Fluctuating Velocity Components (u',

-0.92

—
0.00 2.00

X=20 CM

N T T R
0.00 2.00 4.00 6,00

U-PRIME, M/SEC

X=20 CM

I i 1
0.00 2.00 4.00 6.00

V-PRIME, M/SEC

X=20 CM

4(00 EtOO
W-PRIME, M/SEC

v' and w') Predicted by ASM.

-




Y, METERS

Y, METERS

\ E i3
ORIGINAL PAG
OF POOR QUALITY

Pt S
= Y15 CM [
o [~]
[7p]
o
w
e
o w o
S =<
o o]
P
o]
g o
[~] (]
¢’D (-]

T T 1 T T T 1
0.00 10.00 20.00 30.00 '0.00 10.00 20.00 30.00
TKE, M2/S2 TKE, M2/S2
~N
- X=15 CM < X=20 CM
=3 o'}
(5]
o
w1
—
= =3 &
o o o o
o o
(0]
)
o~ N
(=] [~]
o P )
[ B | 1 [ I I 1
0.00 2.00 4,00 6.00 0.00 2.00 4,00 6.00
uv, M2/S82 uv, M2/852

Figure 6.6~5. Mixing Layer Turbulent Kinetic Energy and Shear

Stress Profiles Predicted by ASM.

200

e I

1

-

AR

s

. e e P g R R MR
R ey s

<eaginrivpe

T I T S T



6.7 Mixing of Coaxial Jets in Ambient Air

Another benchmark test case selected from the data base for
turbulence model evaluations is the flow in the near field uncon-
fined mixing region of two coaxial jets. Measurements for the
selected test case were made by Champagne et al.64 using a hot-wire
probe. A schematic of their test set-up is shown in Figure 6.7-1.
For the test case studied, the ratio of outer to inner velocity at
the nozzle exit was 5.0 with the area ratio, AO/Ai = 2.94,

Computations for this flow were pefformed using the 2-D para-
bolic stream with the measured inlet velocity profile at x/Do =
1.16, where the maximum velocity, Umax was 18.29 m/s. The inlet
kinetic energy profiles were obtained from measurements and a uni-
form inlet length scale of 0.01 D, was prescribed. Computations

were made with the standard k—-¢ model and ASM.

The predicted mean axial velocity profiles with the k-€ model
and data are presented in Figure 6.7-2 at x/Do = 1l.16, 2.14, 3.09,
4.7, 6.05 and 8.02. The profiles shown at x/Do = 1,16 are the ini-
tial profiles used in the computation. Here YM2 represents the
local half width of the jet. These results show that the data and
k-€¢ model predictions are in good agreement with each other. Fig-
ure 6.7-3 show the comparison between data and ASM predictions for

mean axial velocity. These profiles are in good agreement with the
data, and a slight improvement over the k-€ results can be seen.

Figure 6.7-4 show the comparison between the data and ASM pre- Lo
dictions for u'. The predicted u' values are slightly higher than T
the data. However, the radial locations of the peak values are in
good agreement with the data. Figures 6.7-5 presents the compari- o L
son of the v' profiles. The predicted results and measurements are ST
again in good agreement. The comparison between predicted UV and
measured values are illustrated in Figure 6.7~6. These two results ~¥ﬂ;
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35 - o~

are in very good agreement with each other up to x/D = 4.07. Beyond

this station, the predicted uv values are slightly larger in magni-
tude compared to the data.

The k-€ and ASM predictions are in good agreement with mea-
surements. Further improvements in ASM predictions can be achieved
by fine tuning the empirical constants in the model.
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Figure 6.7-1. Coaxial-Jets Mixing Setup of Champagne et al.59
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6.8 PFree Circular Jet

In partial support of the free swirling jet correlation and to
further elucidate the coaxial jet mixing, a simpler case of free
circular jet was selected for model validation. The benchmark case
selected for this flow was that of Wygnanski and Fiedleero. They
have reported accurate measurements of mean and turbulence velocity
com,'onents using a hot-wire anemometer in a test setup shown sche-
mativally in Figure 6.8-l. Their jet diameter at the nozzle exit
was 26.4 mm with a jet exit velocity of 51 m/s. Measurements were
made at x/D = 40, 50, 60, 75, and 97.5. Computations for this case
were made with a 2~D parabolic program using initial profile
obtained from measurements at X/D = 40. Along the axis of the tube,
symmetry conditions were applied. A total of 100 cross—stream
points were used in the computations.

The mean axial velocity profiles obtained from measurements
and standard k-€ meodel predictions are shown in Figure 6.8-2. The
top left corner figure shows the initial profiles used in the com-
putations. The predicted axial velocity results show a slower
decay of centerline velocity than the measurements do. This may be
due to under-estimated diffusion rates. Laundeerl has recommended
modifying the turbulence model constants CD and 02 for round jets
in stagnant surroundings according to the relation

CD = 0.09 - 0.04 f (141)
C2= 1.92 - 0.067 f (142)
) 0.2 .
U aupl
where f= %(—ﬁ@— - é-)?lf-) (143)

These modifications were used to predict the structure of
Wygnanski and Fiedler's free jet. Comparison between the data and
predictions for mean axial velocity are shown in Figure 6.8-3. The
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predicted centerline velocity decay rate shown in this figure is
smaller than the standard k-€ model results.

The correction factor £ is always positive and equations (141) and
(142) would tend to reduce the magnitudes of CD and Cz. Reduction

of Cp value would tend to reduce the eddy viscosity with attendent
decrease in mixing rate.

The present approach is to increase the C, value by the
expression

Cp =0.09 + 0.04 f ‘ (144)

Furthermore, it was considered necessary to evaluate separating the
effects of changing CC and c2 Application of equation (144) alone
on the k-€ model will be denoted as the k<€l model and the use of
equation (144) and (142) will be denoted ag the k-£€2 model in this
report. ‘

The predicted axial velocity profiles using the k-~€1l model and
the measurements are presented in Figure 6.8-4. The agreement
between data and the Kk~€1l model is excellent. Figure 6.8-5 allows
the k-€2 model predictions for axial velocity. These results
demonstrate that the k-€2 model tends to overestimate the mixing,

which is responsible for the fast decay of the centerline velocity
of the jet.

The predicted mean velocity using the standard ASM is pre-
sented in Figqure 6.8~6. The ASM tends to slightly underestimate
the mixing of the jet compared to the k~€1l model, but is signifi~
cantly better than the standard k-€ model. Comparison of the pre-
dicted u' profiles and measurements, as shown in Figure 6.8-7,
illustrates that u' is underpredicted up to x/D = 60 and beyond
that station'the agreement between data and ASM predictions is
very good. This is a consequence of the underestimated mixing
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rates in the model. Figure 6.8-8 shows the comparison of the pre-
dicted and measured v' component at three axial stations. The
agreement between these two is quite good. However, some disagree-
ments can be seen close to the axis of the jet. The predicted w'
velocity profiles are in good agreement with the data, as seen in
Figure 6.8-9. The predicted uv profiles are compared with the
measurements in Figure 6.8-10. ‘The uv values are initially under-
predicted and are slightly overestimated at x/d = 75.

For the case of the round free jet, the standard k-€ mcdel
tends to underestimate the turbulent diffusion rates. Modifica-
tions of the empirical constants are necessary to improve these
results. The k-€1l model accurately predicts the mean velocity pro-
files, while the k-€2 model tends to cverestimate the jet center-
line decay rate. The ASM shows a substantial improvement over the
standard k-€¢ model and no ad hoc modification of the empirical
constants is necessary. The turbulence structure is well predicted
by the ASM, and further refinement of the ASM is necessary to
improve the quantitative predictions,
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Figure 6.8-1. Geometry of Single Free Jet Setup Studied by
Wygnanski and Fiedler.
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6.9 Elow Over a Heated Flat Plate

The k—~€¢ and the ASM seem to predict the momentum transport
reasonably well for simple flows. It was deemed essential to eval-
uate these models on the transport of scalar quantities such as
temperature. The benchmark test case that was selected for this
purpose was the flow over a heated flat plate. Measurements of
mean and fluctuations of temperature were made for this case by
Charnayllo et al. A schematic of their setup is shown in Figure
6.9-1. The flat plate was heated from the leading edge up to x =

0.7 m and maintained at a uniform temperature of 313°K. Beyond x =
0.7 m, the wall temperature was abruptly changed and maintained at
290 °K. The free stream temperature of air during the test was
293°K. Measurements of T, T'2 and vT' were made at x = 0.7, 0.8,

0.9, 1.05, and 1.4 m.

Computations for this case were made using. the 2-D parabolic
program with the initial conditions specified at x = 0.7 m from the
measured orofiles. At x = 0.7 m, only the measured temperature pro-
fiiles were reported. The inlet velocity profiles were assumed to
sonform to the .law of the wall.  The unknown wall mean stress was
calculated by assuming the temperature distribution to also follow

a logarithmic law. The details of this calculation procedure are
as follows:

. !
For a flat plate with constant free stream velocity and sur-

face temperature, the local Stanton number (522——~) is given by

[ Uwc
I((ays‘zl2 as P
"'0.:2
0.0287 Re
St = pr B : (145)
0.169 Re ¢ (13.2 Pr"lo.lﬁ) + 0.9
%
where R, = Polso X/u
b 4
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For the given free stream conditions, St was computed. The local
wall heat flux, q, was obtained from 212

qy =P CplU  (Ty=T,,) St (146)

The logarithmic law for temperature is given by Kays212 as

, = 2.195 1n y* + 13.2 Pr - 5.66 (147)

where,
+ (TW-T) U*

£ =
(q,/Pos Cp) (148)

and y =£’_°39_tz

2 (148)

From the prescribed temperature profile (T vs. y), using equa-
tion (148), the value of u, was computed. Knowing u,, the velocity
profile was constructed from the law of the wall for mean velocity.
This profile was used as the initial velocity profile. The turbu-
lence kinetic energy was assumed to be a constant with k = 0.003 U2.
The length scale was assumed to be linear, 1 = Ky up to y =3§.
Beyond that point, 1 was set equal to «§.

The boundary condition on the boundary layer edge was épeci-
fied through the computed entrainment rate. Along the wall
boundaries, Chien's low Reynolds number correction to the k-¢ model
was applied. Acrbss the boundary layer, a total of 100 nodes were
distributed with the nodes closely spaced near the wall and further
apart near the boundary layer edge. Computations were made using

o k-€ model with gradient transport model

o ASM with gradient transport madel
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o Algebraic scalar transport model (ASTM)

The standard k~e¢€ mcdel predictions with gradient scalar trans-
port model are presented in Figures 6.9-2 through 6.9-4. In

gradient transport assumption, the'following expressions were used
for the turbulent transports:

a0
p ug’ = - fgff’oax (150)
—_ r o8
5 = e
p ve' = eff@ or (151)
— ~\2 ‘ 2
2 .. 2k 88 elid 152
o =gy el (6 x) + (6r>> (152)
eff,a .
Heff
r .. ==
eft,a Preff
where
Preff = 0,9

Figure 6.9-2 shows the comparison between measured and pre-
dicted mean temperature profiles across the boundary layer. In
these figures, ,the abscissa represents the temperature difference,
(T“Two)/(Tw - TWo)’ where Twg is the wall temperature upstream of
X =0.,7 m (313°K). At X = 0.7, the nondimensional temperature
profile would be similar to the velocity profile with a monotonic
variation between zero at the wall to 1.0 at face stream edge. Just
downstream of X = 0.7, the value of the nondimensional temperature

*at the wall jumps to 1.15. The mean temperature profiles gradually

recover from a hot wall condition to a cold wall profile. The k—-€
model predictions for temperature differences are smaller than the
data as seen in Figure 6.9-2. In other words, the model under-
estimates the heat transfer rate to the wall.

The root mean square (RMS) value of the temperature fluctua-
tions obtained from the k-¢ model are shown in Figure 6.9~3. 1In
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these figures, the T' values are nondimensionalized by (Ty, ~Tu)
(20°K in the present case). The k-€ model predicts high values of
T' near the wall. At the outer edge of the boundary layer, the k-€
model predictions are in ;easonably good agreement with data. At
X = 140 cm, the peak T' values tend to approach the measured
values. This indicates that the gradient diffusion assumption is
valid for equilibrium boundary layers.

Figure 6.9-4 illustrates the comparison between data and k-€
model predictions for the turbulent transport VT'. In these fig-
ures, the quantity vT' is nondimensionalized by U (Two - T.), with
Twg being the wall temperature upstream of x = 0.7 m. The k-¢€
model underestimates the heat flux component Vv'T, especially in the
region close to the wall.

The predicted mean temperature profiles obtained from the ASM
and gradient transport assumption are shown in Figure 6.9-5. These
profiles are almost identical to those obtained from the k—-€ model,
and the temperature differences are overestimated. The ASM pre-
dictions for RMS temperature £fluctuations are shown in Figure
6.9-6. These profiles are also identical to thsse obtained from
k-€¢ model. A similar conclusion may be drawn for the VT' profiles

obtained from ASM, as seen in Figure 6.9-7., These figures illus-

trate that the gradient transport model underestimateda the heat
flux, and the ASM does not significanlty improve the heat estima-
tion.

The predicted results using the ASTM are presented in Figure
6.9-8 through 6.9~10. The ASTM uses the expressions given in Sec-
tion 4.0 for the various turbulent transports. The ASTM predic-
tions for mean temperature are shown in Figure 6.9~8. Comparison
with the k-¢ model results (Figure 6.9-2) shows that the ASTM sig-
nificantly improves the predictions for mean temperature, and at
x = 140 cm, the predicted mean temperature profile agrees very well
with the data.
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The ASTM predictions for RMS temperature £luctuations are
illustrated in Figure 6.9-9. The ASTM tends to overestimate the T'
values near the boundary layer edge. In the near-wall region, some
differences between the data and ASTM predictions are present.

These differences are_mainly due to the estimated turbulence struc-
ture, namely, u2 and v2 profiles.

The ASTM predictions for the heat transport VT' are presented
in FPigure 6.9~10. These profiles are in good agreement with the
data near the edge of the boundary layer. However, some dif-
ferences exist in the near-wall region. These are due to the dif-
ferences between estimated values and test conditions. The test
results for the turbulence velocities were not reported. Further
improvements in the ASTM predictions can be achieved if the turbu-
lence structure predictions are refined.

The results presented in this paragraph show that even for a
simple flow case of boundary layer with sudden changes in wall
temperature, the gradient transport aséumption is not valid. The
ASTM gives significantly improved predictions. Further improve-
ments in the Reynolds stress predictions are needed to obtain
quantitatively accurate results from ASTM.

Comparisons of mean temperature (T-Two), the RMS temperature
fluctuations (T'), and the heat transport (WT') calculated using
the various models can be made from the following figures:

Figures
6.9-8
Tl
° 6.9-6
6 .9‘-9
vT! ,
Um(TWo-Tm) 6.9~-4
609-7
6.9-10
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CHARNAY ET AL

FLOW OVER A HEATED FLAT PLATE

TAIR
Uair

Figure 6.9-1. Geometry of Flow Over a Flat Plate
with Step Change in Temperature.
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6.10 Plug Flow Reactor

In reacting flows, the validation of the kinetic scheme is as
important as the turbulence/chemistry interaction model. To vali-
date the kinetic scheme, computations were made for the plug flow
reactor shown schematically in Figure 6.10-1.

Measurements in a plug flow reactor were conducted by Hautman,

et al.,19

for lean, stoichiometric, and rich propane flames. These
measurements were used to test the validity of the four-step scheme
that has been proposed by Glassman and his associates based upon
detailed species and temperature measurements under a well-corn-
trolled low-pressure and high inlet temperature environment. The
Glassman four-step scheme has been incorporated into the Garrett

Combustion Codes, both parabolic and elliptic.

Computations were performed for lean; stoichiometric, and rich
propane flames with both the two-step and the four-step schemes.
Comparisons of these results with the measurements are shown in
Figure 6.10-2 for the case of lean mixture. From Figure 6.10-1, it
is clear that the four-step scheme is far superior to the two-step
scheme in predicting the salient features of hydrocarbon combustion
in the Princeton reactor.

It should be noted that the four-step scheme as proposed by
Glassman and his associates was based upon data from their plug
flow reactor. This scheme probably represents a closer approxima-
tion to actual hydrocarbon oxidation processes in a high tempera-
ture environment than the simpler two-step scheme does. How four-
step correlates other reacting flow situations, such as a laminar
diffusion flame, premixed turbulent flames, and jet flames, is
covered in Paragraphs 6.11, 6.12 and 6.13, respectively.
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Figure 6.10-~1.
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6.11 Laminar Diffusion Flame

Another benchmark test case selected for validating the kin-
etic schemes is the laminar diffusion flame. Measurements for a
laminar diffusion flame have been reported by Mitchell, et al.129
for the setup shown in Figure 6.11-1. This flow was computed with
the 2-D elliptic CPM. Runs of this type are useful in the valida-
tion of reaction mechanisms and establishing rate constant values
since uncertainties due to turbulent interactions are absent.

Comparisons between the measured and predicted species concen-
tration, temperature, and velocity at different axial locations are
shown in Figures 6.11-2 through 6.11-8, respectively, at three
axial stations. The predictions were obtained with both kinetic
schemes and include the influence of buoyancy and variable thermo-
dynamic and transport properties. Overall, the agreement between

a1

the predictions and measurements is fairly good. )

Results with the two-step scheme for the first axial station
(x = 1.2 cm) are presented in Figures 6.11-2 through 6.11-4., The
overall heat relsase rate as indicated by axial velocity (V) corre-
lation is in g&xod agreement with data. Stable species profiles
(e.g. coz, H20, O2 and unburned fuel) are also well correleted.
The CO levels are predicted to be significantly loweq than measure-
ments by a factor of two to three. This is consistent with the two-
step results on the plug flow reactor. Similar observation can be
made for the comparison shown in Figures 6.l11~5 and 6.11-6 at
X = 2.4 cm. The temperature is slightly overpredicted (perhaps due
to neglect of radiation losses in calculations) at x = 5 cm. The
new CO prediction correlates well with the data.

The overall agreement between the two-step predictions and

data 1is reasonable. The slight discrepancies are due to the
following:
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(a) The presence of Ho and intermediate hydrocarbons has Heen
ignored in the two-step scheme. Thnis results in over-
prediction of H,0, CH4, and temperature. Some of these
differences can bhe overcome with an improved scheme.

(b) Differential diffusion of species has been ignored. This
will be significant for H, diffusion due to its low
molecular weight.

(c) Radiation was not considered in these computations.

The four~step results with the rate constants suggested by
Hautman et al. are presented in Figures 6.11-92 through 6.11-15.
Except for the velocity profile at x = 1.2 cm, the scheme indicates
good comparison with data as shown in Figure 6.11-9. The general
shape of the temperature profile is well predicted as shown in Fig-
ure 6.11-10. Near the flame centerline at x = 1.2 cm, the model
underpredicts temperature levels by approximately 50 percent. The
agreement improves further downstream, and by x = 5 cm, the compar-
ison is good. The fuel breakdown near the center is underpredicted
by a factor of two as shown in Figure 6.11-11 for both x = 1.2 and
2.4 cm. Similarly, for the initial portlon of the flame, the Co,
levels near the center are considerably different from data. The
same is true of the other stable species; for example, O2 and H20 as
shown in Figures 6.11-14 and 6.11-15.

The four-step predictions in regard to CO are considerably
better than the two-step results shown in Figures6.ll-4 through
6.11-8. As shown in Figure 6.11-13, the CO peaks are similar in
magnitude, as the data shows. Some improvement is desirable for
the radial profile shape. Overall, the four-step correlates well
with the data. Deficiencies are in regard to correlation in the
initial portion of the flame centerline where the model under-
predicts fuel breakdown and the levels of temperature, Co,, CO, 0,
and Hzo.

241




= 18
ORIGINAL PAGE f
OF POOR QUALITY

CYLINDRICAL
PYREX SHIELD — =

"SILICONE OIL
-LlQuiD s&AL

PERFORATED

BRASS BURNER
PLATE

40 MESH

STAINLESS STEEL
~° SCREENS

CONCENTRIC
BRASS CYLINDERS

STAINLESS
‘ ' STEEL wooL

Figure 6.11-1. Schematic of Laminar Diffu

242 ’

sion Flame;Setup Used By

fiae




S SO

SRR

TN LM ¢

VELOCITY (CM/SEC) OR TEMPERATURE (K/D)

ORIGINAL PAGE-iS
OF POOR QuALITY

VELﬂmyY

L R \°

i I ] ¥ | ¥ |} ] L4

0 8.1 0.3 0.5 0.7 0.9 1.1 13 15 1.7

Figure 6.11.2.

DISTANCE FROM SYMMETRY AXIS (CM)

Comparison Between Two-Step Model Predictions and
Measurements for Axial Velocity and Temperature
Profiles of the Mitchell's Laminar Diffusion
Flame at 1.2 cm Above the Burner Plate.

243




3w

Figure

Figure 6.11-4. Two-Step Predictions and Measurements for N

244

COMPOSITION (MOLE PERCENT)

S N oo o

6-11—30

CONCENTRATION (MOLE PERCENT)

ORIGINAL PAGE IS
OF POOR QUALITY

0 01 0.3 0.5 0.7 0.8 1.1 1.3
DISTANCE FROM SYMMETRY AXIS {CM}

Two-Step Predictions and Measurements for CH

C02, H20 and 02 Profiles, X

80
70
60
50

1.5

Ny

1.7

1.2 cm.

- N W &>

€0

0 41— T T Y T T T
0 01 0.3 0.5 0.7 0.8 1.1 13
DISTANCE FROM SYMMETRY AXIS (CM)

CO Profiles, X = 1.2 cm.

2

and

a7

I LR R

P

S

L -

3



Figure 6.11-6. Predicted and Measured Species
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Figure 6.11-8.
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6.12 Turbulent Premixed Flame in a Rectangular Duct

Another test‘case selected from the data base for evaluating
kinetic schemes is the reacting flow of premixed propane/air in a
rectangular duct with a flame stabilizer as shown in Figure 6.12-1.
Measurements for this flow were made by Shipman,l37' 138 et al.

Computations for this case were performed using the 2-D para-
bolic program and standard k-¢ model, with the initial profiles
obtained from measurements 0.0508 m downstream of the flame holder.
The average inlet velocity was 18.288 m/s at a pressure of one
atmosphere, having a turbulence intensity of 3 percent. Along the
plane of symmetry, a zero radial gradient was specified for all the
variables except V, which was set to zero. Along the outer radial
boundary, wall function treatment was employed. Computations were
performed with two-step and four-step kinetic schemes. On the two-
step scheme, two different sets of rate constants were used. One
of them ¢orresponds with the constants established in the Army Com-
bustor Design Criteria Program, and the other set is for the PM/PV
12 Table 14 provides the values of the Arrhenius pre-
exponents and the activation temperatures for the reaction steps.

combustion.

TARLE 14. TWO-STEP RATE CONSTANTS FOR GARRETT/AVLABS AND
PREMIXED/PREVAPORIZING REACTION.

REACTION STEP 1 REACTION STEP 2

Pre- Activation Pre- Activation

Exponent Temperature Exponent Temperature
|Design criteria| 3.3 x 1014 27,000 6.0x10° 12,500
PM/PV | 3.9x10° 18,000 2.2x108 12,500

The predictions obtained using the Design Criteria constants
are shown in Figures 6.12-2 through 6.12-8, and those using the
PM/PV constants are presented in Figures 6.12-9 through 6.12~-15.

The predicted mean axial. velocity using the Design Criteria
constant and the measurements are shown in Figure 6.12-2 at five
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axial stations downstream of the flame holder. The predicted axial
velocity profiles show slower mixing rates compared to the measure-
ments. The velocities near the plane of symmetry are considerably
smaller in the predictions than in the data.

Figure 6.12-3 illustrates the computed profiles of unburned
fuel and data at five axial stations. The predicted unburned fuel
mass fractions are higher than the measured wvalues indicating
slower fuel disappearance rate. Figure 6.12-4 illustrates the com-
parison between predicted and measured CO mass fraction. The pre-
dicted CO profiles are significantly lower than the data up to x =
0.2032, partly due to the slow reaction rates. Beyond this sta-
tion, the CO mass fractions are in reasonable agreement with data.
However, the radial spread of CO profiles are underpredicted by the
model.

Since the reaction rates are underpredicted by the design cri-
teria rate constants, the predicted temperatures (Figure 6.12-5)
are also lower than the measurements. The radial spreading of tem-
perature profile is also underpredicted by the model.

The othe; derived variables giich as 02, co, and H,0 are pre-
sented in Figures 6.12-6 through 6.12-8, respectively. Due to the
lower fuel'consumption rate, predicted 02 profiles are higher than
measurements. Similarly. the discrepancy between predictions and
measured CO2 can be explainedQ Apparent improvement in regard to
H,0 profiles may be due to faster diffusion rates of this species

 compared to model assumptions of equal diffusivity for all species.

In conclusion, the Army Combustor Design Criteria rate con-
stants appear to underpredict fuel consumption rate and temperature

profiles. On occasions the design criteria constants have seemed

to overpredict reaction rates. More extensive validation is needed
to establish the two-step rate constants for both diffusion and
premixed flames.
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The predicted results for mean velocity, obtained by using the
PM/PV rate constants, are presented in Figure 6.12-9. A substan-
tial improvement can be observed in the agreement between data and
predictions, when compared to the results using Design Criteria {
rate constants (Figure 6.12-2). This is due to faster fuel con-~ j
sumption. Figure 6.12-10 illustrates the comparison of data and
predictions for unburned fuel. These profiles are in much better
agreement than the results obtained from the first set of rate con-
stants. However, the radial diffusion rates are still
underpredicted by the model.

Ry L, T s e o

The comparison between predicted‘and measured CO2 profiles are
presented in Figure 6.12-11. Due to the improved convection rates,
the reaction rates are expected to be higher, and hence the 002
values are higher than the values obtained from the design criteria
rate constants. The EGZ values predicted from the PM/PV rate con-
stants are still smaller than the measured values.

T i e~

The predicted and increased profiles for CO are illustrated in e
Figure 6.12-12. The predicted peak CO values are higher than the i
data and the predicted CO mass fraction profiles do not spread
radially outwards as much as seen in the measurements.

e e e e

The predicted temperature distributions using the PM/PV rate
constants and the measurements are ptesented in Figure 6.12-13. %
Since the reaction rates are faster, it is expected that the pre- i
dicted temperatures are also higher than those obtained using the s?‘

design criteria rate constants. Overall these profiles are in good
agreement with data.

Figures 6.12-14 and 6.12-~15 show comparisons between measured &1“{
i
§

and predicted profiles of 02 and H20, respectively. Although there ,
is improvement over the design criteria constants in regard to O2 s
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and COZ’ the comparison is worse for H,0. This may be due to a
number of reasons, such as:

o Incorrect approximation of fuel breakdown by simple two-
step

(o} Neglect of H, as one of the intermediate products

o Assumption of equal diffusivities of all gaseous mole-
cules

o Turbulence/chemistry interaction represented by a simple

eddy breakup model

Calculations were also performed using the four-step kinetic
scheme outlined in Section 3.0. The rate constants used in this
19 et al.
These rate constants have given good comparison with plug flow

computation were obtained from the report of Hautman,

reaction as shown in Figure 6.10-1. The Arrhenius pre-exponents

and the activation temperatures for each of the four steps are R
given in Table 15. .

TABLE 15. RATE CONSTANTS FOR 4~STEP KINETIC SCHEME.

REACTION ARRHENIUS ACTIVATION EDDY BREAKUP

STEP PRE-EXPONENT (Ko) TEMPERATURE CONSTANT (CR)
1  2.0893 x 1022 24,800 3.0 ,
2 5.0117 x 1012 25,000 3.0 ‘f:;
3 3.9811 x 10%° 20,000 3.0 L
4 3.3113 x 10%8 20,500 | 3.0 S
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3 A

The predicted mean axial velocity profiles using the four-step
kinetic scheme and the data are presented in Figure 6.12-16. The
predicted velocities are significantly smaller than the measure-
ments. Predicted unburned fuel profiles are shown in Figure
6.12-17 along with the data. Comparison with the two-step results
(Figure 6.12-14) shows that there are no appreciable differences in
the unburned fuel profiles between four-step and two-step.

The four-step predictions for CO are presented in Figure
6.12-18. Due to the slow reaction rates in the four-step scheme,
the predicted CO values are smaller compared to both the data and
the two-step scheme (Figures 6.12-4 and 6.12-12). Consequently, as
shown in Figure 6.12-19 the four-step predicted temperature pro-
files are lower than the two-step (Figures 6.12-5 and 6.12-13) and
the data. The other derived variables are similar including 0,
co, and H20 shown in Figures 6.12-20 through 6.12-22. B

A number of reasons can be forwarded for delivering poor cor-
relation with the four-step scheme. Numerical experimentation was
made to demonstrate that the basic mechanism is valid and that
future modifications to the approach will yield good comparison.
Figures 6.12-23 through 6.12-29 present results with the first two
reaction~-step rate constants changed

. 2.0893 x 1024

=
(o]
[
i

CR1 = 6.0

5.0117 x 10%Y Cr_ = 6.0

2

=
e}
N
L}

Significant improvement in predictions can be seen, and one
can therefore conclude that the basic four-step hydrocarbon oxida-
tion mechanism is valid.
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Figure 6.12~1l. Geometry of Turbulent Premixed Flame

in a Rectangular Duct.
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Figure 6.12-10. Predicted Unburned Fuel Profiles with PM/PV Rate
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Figure 6.12-14. Predicted O, Profiles With PM/PV Rate Constants.
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Figure 6.12~16.
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Figure 6.12-18. Predicted CO Profiles With The 4-Step Scheme.
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Figure 6.12-24. Modified 4-Step -- Unburned Fuel Profiles.
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6.13 Free Methane Turbulent Jet Flame

The free, turbulent, reacting methane jet inveitigated by
Hassan, et al.,133 was modeled here using the PDF-partial equilib-
rium approach of Bilger and Starner.27 Although several configura-
tions were studied by Hassan, the detailed data was available only
on the flame that has been investigated here. The test setup was a
vertical free turbulent methane jet issuing from a 7.74 mm diameter
pipe as shown schematically in Figure 6.13-1. The jet Reynolds
number was 15,000, with a bulk velocity of 39.9 m/s. The flame was
stabilized by a co-annular flow of 1l percent (by mass) of hydragen.
A discussion of the data and the results of the numerical model are
presented below.

From the initial (or tube exit) jet velocity, mass flow and
assumed temperature of 59°F, mass and energy flux can be determined
for comparison at downstream positions. The fuel was reported to
be 94 percent methane. From the assumption of atmospheric pressure
and the reported density, a molecular weight of 17.22 was deter~
mined. If the remaining 6 percent was composed of nitrogen and
propane (typical dry natural gas composition), then 52.4 percent of
that fraction being nitrogen would give the above molecular weight.
From the reported mass flows of H2 and fuel, the following mole
fractions were determined,

Xpuey, = 78-86%, Xcmy = 74.13, Xy, = 2.48, Xcgug = 2.25, X, = 21.

The specific enthalpy at the jet exit is then ~4.154.106E% and
energy flux is -5858 E%E’

288

I
Npeai

S

e

T .
R

P A
+

F e\



B

At four axial positions (x/D = 36.2, 75, 113,7 and 204) radial
profiles of temperature, mole fractions of CO, CO2 and O2 were
reported. Consider the reaction equation in mole fraction form,

Ny

Fch Hcy Ncn+A (02 +'6-2- N2) — XCO+XCO2 +X02

+ XcH, + XCHy + XHy + XHa0 * XN,

Although dry measurements were made, the following analysis assumes
that the reported results were based on the same reaction equation
with the possible exception of CH2. Then, for the above reaction
equation, there are four atom-balance equations and the sum of mole
fractions identity for six unknowns (again exclude CH2); therefore,
an additional constraint is required. For this, the water/gas
equilibrium213 based on the measured local mean temperature and
modified as described below, was chosen. Then at various radii in
the cross section to give an adequate definition, the reported data
were interpolated using cubic splines and the above unknowns com-
puted. Also the asymptotic end of each measured profile was deter- o
mined from cubic spline fitting (extrapolation). If the above sys- ‘iﬁ
tem of equations gave a negative mole fraction of methane (occur- s
ring in the high temperature and lean boundary regions) or CO was
nonexistent, then the water/gas equilibrium constraint was dropped
and the reaction equation solved (excluding both CH2 and CH4).
Lastly, the outermost regions would not have any free hydrogen (as
evidenced by computing negative mole fractions of same). Then the
carbon~balance constraint was dropped (taking the O2 measurements

as being more accurate), and the reaction equation solved for .
nitrogen, water, and stoichiometry. :

The water/gas equilibrium shift results of Mitchell, et o
al.,129 were applied to the equilibrium constant (determined from U

measured temperature) in the rich regions of the flame. 1In the Y
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lean regions at less than 1400°K, the reaction was assumed to be
quenched (5) at 1400°K.

With an assumed jet profile of [19],

2
o = 1-(_£>3/2
b Iy

where the jet radius (rb) is minimum of the CO, or 0, profile
asymptote and the centerline velocity is determined by matching the
energy flux. For this balance consider the following control vol-
umes ,

it

Mghg " I
_ N S |
Continuity gives me = mi + mx where mx is the entrainment, and
14 4
energy gives _
2 Iy 2 Iy
u, _ u a il h
ai by * 21 = j' h + 5—| uprdr - j’upr r - hi{ he

0

where,

r, - radius of thermal boundary as determined from
the temperature profile

d.,q — radiation heat transfer outside jet boundary
to mass entrained

p - local density

M, - initial jet mass flux
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This procedure was attempted at all four measurement stations.
For the first, x/D = 36.2, the energy flux matching gave u, = 26.85
m/s. The other three stations have more enthalpy in the outer
boundary region than matching will allow, indicating that temper-~
ature measurements there are high.

The partial equilibrium computation$s were made with the full
stoichiometry adjusted (i.e. amount of CH4 and Nz) to give the cor-
rect enthalpy flux. The 2-D turbulent jet calculations were based
on a jet diameter 1 mm larger than that reported (i.e., the OD of
the H, stabilizer). Then, an assumed fully developed pipe flow
velocity profile at the exit was set to give the correct jet mass
flux.214 The turbulence intensity profile was taken from developed
pipe flow results.215 The partial equilibrium computations were
based on the specific thermodynamic of the JANAF tables using the
curve fits of Wakelyn and McLain,216 the three body recombination
kinetics of Jensen and Jones28 and the global hydrocarbon breakdown
of Duterque, et al.29 Additionally, the flame sheet approximation
had a pyrolysis mixture fraction of 0.073 and 0.2 mass fraction of
organic fuel converted to intermediate at the pyrolysis flame
sheet. 1In the 2-D turbulent jet calculations, the initial turbu-
lent length scales were 0.1 inner (jet) and 0.2 outer, both based
on the jet diameter. Also the free stream or ambient air was given
a velocity of 0,25 m/s.

The axial plots of cénterline,temperature, co, COZ’ and 0, are
shown in Figure 6.13-2. The model-predicted centerline temperature
.profile agrees reasonably well in regard to temperature rise
upstream and downstream of the flame tip at the center. The pre-~
dicted peak temperature level and its axial location are slightly dif-
ferent from data. The ihitial CO buildup agrees well with data;
but there is some discrepancy in the post-£flame regibn. Similar
conclusions can be made about the co, profiles shown in Figure
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6.13~2., For the initial portion of the flame (x < 0.75 m), measure-
ments indicate finite concentration of 0, at the centerline, Such
a behavior cannot be predicted by diffusion [lame models including
Bilger's model which, for a high fuel~rich region, sets 0, equal to
Zero.

Figure 6.13-3 shows a comparison between measured and pre-
dicted profiles of total fuel mass fraction, and unburned fuel pro-
files are presented in Figure 6.13-4. 1In the initial portion of
the flame, the conclusions are good, but farther down stream the
fuel oxidation rate is faster than what data would indicate. This
also results in higher centerline temperature levels as shown in
Figure 6.13-5. From the model predictions of total fuel mass frac-
tion at x/D = 113.7, it is concluded that the Bilger model is predict-
ing a faster jet spreading rate. This causes faster decay of the
centerline temperature in the post~flame region as shown in Figure
6.13=5,

Comparison between measured and predicted CO profiles (Figure
6.13-6) show that, whereas the agreement is good up to x/D = 75, the
post~flame region is not well correlated by the Bilger model. Sim-
ilar conclusions can be made for the H2 profiles as presented in
Figure 6.13-7. For the 0, profiles, (Figure 6.13-8) up to x/D = 75,
the model predictions are reasonable. But further downstream the
model is predicting higher spreading rate than measurements sug-
gest. Similar levels of correlations are obtained for co, profiles
as shown in Figure 6.13-9.
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