1,192 research outputs found

    Gravity and Geometric Phases

    Get PDF
    The behavior of a quantum test particle satisfying the Klein-Gordon equation in a certain class of 4 dimensional stationary space-times is examined. In a space-time of a spinning cosmic string, the wave function of a particle in a box is shown to acquire a geometric phase when the box is transported around a closed path surrounding the string. When interpreted as an Aharonov-Anandan geometric phase, the effect is shown to be related to the Aharonov-Bohm effect.Comment: 11 pages, latex fil

    Spin-polarized Tunneling in Hybrid Metal-Semiconductor Magnetic Tunnel Junctions

    Full text link
    We demonstrate efficient spin-polarized tunneling between a ferromagnetic metal and a ferromagnetic semiconductor with highly mismatched conductivities. This is indicated by a large tunneling magnetoresistance (up to 30%) at low temperatures in epitaxial magnetic tunnel junctions composed of a ferromagnetic metal (MnAs) and a ferromagnetic semiconductor (GaMnAs) separated by a nonmagnetic semiconductor (AlAs). Analysis of the current-voltage characteristics yields detailed information about the asymmetric tunnel barrier. The low temperature conductance-voltage characteristics show a zero bias anomaly and a V^1/2 dependence of the conductance, indicating a correlation gap in the density of states of GaMnAs. These experiments suggest that MnAs/AlAs heterostructures offer well characterized tunnel junctions for high efficiency spin injection into GaAs.Comment: 14 pages, submitted to Phys. Rev.

    Uhlmann's geometric phase in presence of isotropic decoherence

    Get PDF
    Uhlmann's mixed state geometric phase [Rep. Math. Phys. {\bf 24}, 229 (1986)] is analyzed in the case of a qubit affected by isotropic decoherence treated in the Markovian approximation. It is demonstrated that this phase decreases rapidly with increasing decoherence rate and that it is most fragile to weak decoherence for pure or nearly pure initial states. In the unitary case, we compare Uhlmann's geometric phase for mixed states with that occurring in standard Mach-Zehnder interferometry [Phys. Rev. Lett. {\bf 85}, 2845 (2000)] and show that the latter is more robust to reduction in the length of the Bloch vector. We also describe how Uhlmann's geometric phase in the present case could in principle be realized experimentally.Comment: New ref added, refs updated, journal ref adde

    Tunneling from a correlated 2D electron system transverse to a magnetic field

    Full text link
    We show that, in a magnetic field parallel to the 2D electron layer, strong electron correlations change the rate of tunneling from the layer exponentially. It results in a specific density dependence of the escape rate. The mechanism is a dynamical Mossbauer-type recoil, in which the Hall momentum of the tunneling electron is partly transferred to the whole electron system, depending on the interrelation between the rate of interelectron momentum exchange and the tunneling duration. We also show that, in a certain temperature range, magnetic field can enhance rather than suppress the tunneling rate. The effect is due to the magnetic field induced energy exchange between the in-plane and out-of-plane motion. Magnetic field can also induce switching between intra-well states from which the system tunnels, and a transition from tunneling to thermal activation. Explicit results are obtained for a Wigner crystal. They are in qualitative and quantitative agreement with the relevant experimental data, with no adjustable parameters.Comment: 16 pages, 9 figure

    Modeling Complex Nuclear Spectra - Regularity versus Chaos

    Get PDF
    A statistical analysis of the spectrum of two particle - two hole doorway states in a finite nucleus is performed. On the unperturbed mean-field level sizable attractive correlations are present in such a spectrum. Including particle-hole rescattering effects via the residual interaction introduces repulsive dynamical correlations which generate the fluctuation properties characteristic of the Gaussian Orthogonal Ensemble. This signals that the underlying dynamics becomes chaotic. This feature turns out to be independent of the detailed form of the residual interaction and hence reflects the generic nature of the fluctuations studied.Comment: 8 pages of text (LATEX), figures (not included, available from the authors), Feb 9

    Entanglement, Bell Inequalities and Decoherence in Particle Physics

    Full text link
    We demonstrate the relevance of entanglement, Bell inequalities and decoherence in particle physics. In particular, we study in detail the features of the ``strange'' K0Kˉ0K^0 \bar K^0 system as an example of entangled meson--antimeson systems. The analogies and differences to entangled spin--1/2 or photon systems are worked, the effects of a unitary time evolution of the meson system is demonstrated explicitly. After an introduction we present several types of Bell inequalities and show a remarkable connection to CP violation. We investigate the stability of entangled quantum systems pursuing the question how possible decoherence might arise due to the interaction of the system with its ``environment''. The decoherence is strikingly connected to the entanglement loss of common entanglement measures. Finally, some outlook of the field is presented.Comment: Lectures given at Quantum Coherence in Matter: from Quarks to Solids, 42. Internationale Universit\"atswochen f\"ur Theoretische Physik, Schladming, Austria, Feb. 28 -- March 6, 2004, submitted to Lecture Notes in Physics, Springer Verlag, 45 page

    Survival, pathologic response, and genomics in CALGB 40601 (Alliance), a neoadjuvant Phase III trial of paclitaxel-trastuzumab with or without lapatinib in HER2-positive breast cancer

    Get PDF
    PURPOSE CALGB 40601 assessed whether dual versus single human epidermal growth factor receptor 2 (HER2) -targeting drugs added to neoadjuvant chemotherapy increased pathologic complete response (pCR). Here, we report relapse-free survival (RFS), overall survival (OS), and gene expression signatures that predict pCR and survival. PATIENTS AND METHODS Three hundred five women with untreated stage II and III HER2-positive breast cancer were randomly assigned to receive weekly paclitaxel combined with trastuzumab plus lapatinib (THL), trastuzumab (TH), or lapatinib (TL). The primary end point was pCR, and secondary end points included RFS, OS, and gene expression analyses. mRNA sequencing was performed on 264 pretreatment samples. RESULTS One hundred eighteen patients were randomly allocated to THL, 120 to TH, and 67 to TL. At more than 7 years of follow-up, THL had significantly better RFS and OS than did TH (RFS hazard ratio, 0.32; 95% CI, 0.14 to 0.71; P 5.005; OS hazard ratio, 0.34; 95% CI, 0.12 to 0.94; P 5.037), with no difference between TH and TL. Of 688 previously described gene expression signatures, significant associations were found in 215 with pCR, 45 with RFS, and only 22 with both pCR and RFS (3.2%). Specifically, eight immune signatures were significantly correlated with a higher pCR rate and better RFS. Among patients with residual disease, the immunoglobulin G signature was an independent, good prognostic factor, whereas the HER2-enriched signature, which was associated with a higher pCR rate, showed a significantly shorter RFS. CONCLUSION In CALGB 40601, dual HER2-targeting resulted in significant RFS and OS benefits. Integration of intrinsic subtype and immune signatures allowed for the prediction of pCR and RFS, both overall and within the residual disease group. These approaches may provide means for rational escalation and de-escalation treatment strategies in HER2-positive breast cancer

    Integrated analysis of RNA and DNA from the phase III trial CALGB 40601 identifies predictors of response to trastuzumab-based neoadjuvant chemotherapy in HER2-positive breast cancer

    Get PDF
    Purpose: Response to a complex trastuzumab-based regimen is affected by multiple features of the tumor and its microenvironment. Developing a predictive algorithm is key to optimizing HER2-targeting therapy. Experimental Design: We analyzed 137 pretreatment tumors with mRNA-seq and DNA exome sequencing from CALGB 40601, a neoadjuvant phase III trial of paclitaxel plus trastuzumab with or without lapatinib in stage II to III HER2-positive breast cancer. We adopted an Elastic Net regularized regression approach that controls for covarying features within high-dimensional data. First, we applied 517 known gene expression signatures to develop an Elastic Net model to predict pCR, which we validated on 143 samples from four independent trials. Next, we performed integrative analyses incorporating clinicopathologic information with somatic mutation status, DNA copy number alterations (CNA), and gene signatures. Results: The Elastic Net model using only gene signatures predicted pCR in the validation sets (AUC ¼ 0.76). Integrative analyses showed that models containing gene signatures, clinical features, and DNA information were better pCR predictors than models containing a single data type. Frequently selected variables from the multiplatform models included amplifications of chromosome 6p, TP53 mutation, HER2-enriched subtype, and immune signatures. Variables predicting resistance included Luminal/ERþ features. Conclusions: Models using RNA only, as well as integrated RNA and DNA models, can predict pCR with improved accuracy over clinical variables. Somatic DNA alterations (mutation, CNAs), tumor molecular subtype (HER2E, Luminal), and the microenvironment (immune cells) were independent predictors of response to trastuzumab and paclitaxel-based regimens. This highlights the complexity of predicting response in HER2-positive breast cancer

    Geometric Spin Hall Effect of Light at Polarizing Interfaces

    Full text link
    The geometric Spin Hall Effect of Light (geometric SHEL) amounts to a polarization-dependent positional shift when a light beam is observed from a reference frame tilted with respect to its direction of propagation. Motivated by this intriguing phenomenon, the energy density of the light beam is decomposed into its Cartesian components in the tilted reference frame. This illustrates the occurrence of the characteristic shift and the significance of the effective response function of the detector. We introduce the concept of a tilted polarizing interface and provide a scheme for its experimental implementation. A light beam passing through such an interface undergoes a shift resembling the original geometric SHEL in a tilted reference frame. This displacement is generated at the polarizer and its occurrence does not depend on the properties of the detection system. We give explicit results for this novel type of geometric SHEL and show that at grazing incidence this effect amounts to a displacement of multiple wavelengths, a shift larger than the one introduced by Goos-H\"anchen and Imbert-Fedorov effects.Comment: 6 pages, 4 figure
    corecore