3,189 research outputs found

    Implementation of multipartite unitary operations with limited resources

    Get PDF
    A general method for implementing weakly entangling multipartite unitary operations using a small amount of entanglement and classical communication is presented. For the simple Hamiltonian \sigma_z\otimes\sigma_z this method requires less entanglement than previously known methods. In addition, compression of multiple operations is applied to reduce the average communication required.Comment: 7 pages, 4 figures, comments welcom

    Interconvertibility of single-rail optical qubits

    Full text link
    We show how to convert between partially coherent superpositions of a single photon with the vacuum using linear optics and postselection based on homodyne measurements. We introduce a generalized quantum efficiency for such states and show that any conversion that decreases this quantity is possible. We also prove that our scheme is optimal by showing that no linear optical scheme with generalized conditional measurements, and with one single-rail qubit input can improve the generalized efficiency.Comment: 3 pages, 2 figure

    Relations for classical communication capacity and entanglement capability of two-qubit operations

    Full text link
    Bipartite operations underpin both classical communication and entanglement generation. Using a superposition of classical messages, we show that the capacity of a two-qubit operation for error-free entanglement-assisted bidirectional classical communication can not exceed twice the entanglement capability. In addition we show that any bipartite two-qubit operation can increase the communication that may be performed using an ensemble by twice the entanglement capability.Comment: 4 page

    Introduction

    Get PDF

    Countering Quantum Noise with Supplementary Classical Information

    Full text link
    We consider situations in which i) Alice wishes to send quantum information to Bob via a noisy quantum channel, ii) Alice has a classical description of the states she wishes to send and iii) Alice can make use of a finite amount of noiseless classical information. After setting up the problem in general, we focus attention on one specific scenario in which Alice sends a known qubit down a depolarizing channel along with a noiseless cbit. We describe a protocol which we conjecture is optimal and calculate the average fidelity obtained. A surprising amount of structure is revealed even for this simple case which suggests that relationships between quantum and classical information could in general be very intricate.Comment: RevTeX, 5 pages, 2 figures Typo in reference 9 correcte

    Equivalence of Quantum States under Local Unitary Transformations

    Full text link
    In terms of the analysis of fixed point subgroup and tensor decomposability of certain matrices, we study the equivalence of of quantum bipartite mixed states under local unitary transformations. For non-degenerate case an operational criterion for the equivalence of two such mixed bipartite states under local unitary transformations is presented.Comment: 6 page

    NMR C-NOT gate through Aharanov-Anandan's phase shift

    Get PDF
    Recently, it is proposed to do quantum computation through the Berry's phase(adiabatic cyclic geometric phase) shift with NMR (Jones et al, Nature, 403, 869(2000)). This geometric quantum gate is hopefully to be fault tolerant to certain types of errors because of the geometric property of the Berry phase. Here we give a scheme to realize the NMR C-NOT gate through Aharonov-Anandan's phase(non-adiabatic cyclic phase) shift on the dynamic phase free evolution loop. In our scheme, the gate is run non-adiabatically, thus it is less affected by the decoherence. And, in the scheme we have chosen the the zero dynamic phase time evolution loop in obtaining the gepmetric phase shift, we need not take any extra operation to cancel the dynamic phase.Comment: 5 pages, 1 figur

    Faithful remote state preparation using finite classical bits and a non-maximally entangled state

    Full text link
    We present many ensembles of states that can be remotely prepared by using minimum classical bits from Alice to Bob and their previously shared entangled state and prove that we have found all the ensembles in two-dimensional case. Furthermore we show that any pure quantum state can be remotely and faithfully prepared by using finite classical bits from Alice to Bob and their previously shared nonmaximally entangled state though no faithful quantum teleportation protocols can be achieved by using a nonmaximally entangled state.Comment: 6 page

    On the quantum, classical and total amount of correlations in a quantum state

    Full text link
    We give an operational definition of the quantum, classical and total amount of correlations in a bipartite quantum state. We argue that these quantities can be defined via the amount of work (noise) that is required to erase (destroy) the correlations: for the total correlation, we have to erase completely, for the quantum correlation one has to erase until a separable state is obtained, and the classical correlation is the maximal correlation left after erasing the quantum correlations. In particular, we show that the total amount of correlations is equal to the quantum mutual information, thus providing it with a direct operational interpretation for the first time. As a byproduct, we obtain a direct, operational and elementary proof of strong subadditivity of quantum entropy.Comment: 12 pages ReVTeX4, 2 eps figures. v2 has some arguments clarified and references update
    • …
    corecore