63 research outputs found

    Alternaria species associated with early blight epidemics on tomato and other Solanaceae crops in northwestern Algeria

    Get PDF
    Early blight is a common disease of Solanaceae crops worldwide. The occurrence of Alternaria spp. was studied during three epidemics on tomato in northwestern Algeria. Alternaria was detected in more than 80 % of the diseased plant samples and accounted for more than 50 % of the total fungal isolates recovered from these samples. Morphological and molecular investigations revealed that small-spored isolates producing beaked conidia, i.e. belonging to the section alternaria, were prominent in most of the surveyed locations representing more than 80 % of the total Alternaria isolates in three locations (Mascara, Ain Témouchent and Sidi Belabbèsse). Based on their sporulation patterns they were recognized as A. alternata and A. tenuissima. Small-spored isolates producing conidia without beak and assigned to A. consortialis were also found at a low frequency (< 1 %). Large-spored isolates producing conidia ended by typical long beaks and identified as A. linariae (syn. A. tomatophila), A. solani and A. grandis were also recovered from all the sampled areas and represented 33.8 %, 6.3 % and 1.3 % of the total Alternaria isolates, respectively. Pathogenicity tests on tomato with a selection of 85 strains representative of the isolates collection revealed that all the tested isolates were able to produce extending lesions on inoculated leaves albeit with variable intensity. Large-spored species included the most aggressive isolates. Small-spored Alternaria, although less aggressive than large-spored Alternaria, had the ability to provoke brown necrotic spots and circumstantially developed synergistic interactions in mixed infections with moderately aggressive isolates of A. linariae

    Molecular Level Characterization of the Structure and Interactions in Peptide-Functionalized Metal-Organic Frameworks

    Get PDF
    We use density functional theory, newly parameterized molecular dynamics simulations, and last generation N-15 dynamic nuclear polarization surface enhanced solid-state NMR spectroscopy (DNP SENS) to understand graft-host interactions and effects imposed by the metal-organic framework (MOF) host on peptide conformations in a peptide-functionalized MOF. Focusing on two grafts typified by MIL-68-proline (-Pro) and MIL-68-glycine-proline (-Gly-Pro), we identified the most likely peptide conformations adopted in the functionalized hybrid frameworks. We found that hydrogen bond interactions between the graft and the surface hydroxyl groups of the MOF are essential in determining the peptides conformation(s). DNP SENS methodology shows unprecedented signal enhancements when applied to these peptide-functionalized MOFs. The calculated chemical shifts of selected MIL-68-NH-Pro and MIL-68-NH-Gly-Pro conformations are in a good agreement with the experimentally obtained (NNMR)-N-15 signals. The study shows that the conformations of peptides when grafted in a MOF host are unlikely to be freely distributed, and conformational selection is directed by strong host-guest interactions

    Vanin-1 Pantetheinase Drives Smooth Muscle Cell Activation in Post-Arterial Injury Neointimal Hyperplasia

    Get PDF
    The pantetheinase vanin-1 generates cysteamine, which inhibits reduced glutathione (GSH) synthesis. Vanin-1 promotes inflammation and tissue injury partly by inducing oxidative stress, and partly by peroxisome proliferator-activated receptor gamma (PPARγ) expression. Vascular smooth muscle cells (SMCs) contribute to neointimal hyperplasia in response to injury, by multiple mechanisms including modulation of oxidative stress and PPARγ. Therefore, we tested the hypothesis that vanin-1 drives SMC activation and neointimal hyperplasia. We studied reactive oxygen species (ROS) generation and functional responses to platelet-derived growth factor (PDGF) and the pro-oxidant diamide in cultured mouse aortic SMCs, and also assessed neointima formation after carotid artery ligation in vanin-1 deficiency. Vnn1−/− SMCs demonstrated decreased oxidative stress, proliferation, migration, and matrix metalloproteinase 9 (MMP-9) activity in response to PDGF and/or diamide, with the effects on proliferation linked, in these studies, to both increased GSH levels and PPARγ expression. Vnn1−/− mice displayed markedly decreased neointima formation in response to carotid artery ligation, including decreased intima:media ratio and cross-sectional area of the neointima. We conclude that vanin-1, via dual modulation of GSH and PPARγ, critically regulates the activation of cultured SMCs and development of neointimal hyperplasia in response to carotid artery ligation. Vanin-1 is a novel potential therapeutic target for neointimal hyperplasia following revascularization

    MATISSE, perspective of imaging in the mid-infrared at the VLTI

    Get PDF
    International audienceMATISSE is foreseen as a mid-infrared spectro-interferometer combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory. The related science case study demonstrates the enormous capability of a new generation mid-infrared beam combiner. MATISSE will constitute an evolution of the two-beam interferometric instrument MIDI. MIDI is a very successful instrument which offers a perfect combination of spectral and angular resolution. New characteristics present in MATISSE will give access to the mapping and the distribution of the material (typically dust) in the circumstellar environments by using a wide mid-infrared band coverage extended to L, M and N spectral bands. The four beam combination of MATISSE provides an efficient UV-coverage : 6 visibility points are measured in one set and 4 closure phase relations which can provide aperture synthesis images in the mid-infrared spectral regime

    THEORY AND SELF-CONSISTENT MODEL OF DUST-DRIVEN WINDS

    No full text
    The aim is to determine the role and the influence of assumptions concerning both dynamics and radiative transfer in models of winds and mass loss of evolved stars, when the radiative force on dust grains plays a major role in the structuration of the circumstellar envelope of the star. The flow is described successively using three models coupling the grain and the gas dynamics in a self-consistent way with radiative transfer for three different approaches of the dynamics: the Position Coupling, the Momentum Coupling and the Full Problem. A complete radiative transfer including multiple scattering, absorption and thermal emission is taken into account to determine the temperature of dust grains which in turn governs their thermal emission. The medium is not necessarily optically thin. In all cases, numerical iterations couple dynamics with transfer. Thus two codes are used alternately, starting with an initial profile of radiation pressure, until convergence to a self-consistent solution. This emphasizes the importance of the drift velocity between the grains and the gas, and the inertia of dust together with hydrodynamics/transfer coupling. When the medium is optically thick, an opaque zone is located at the base of the wind. This zone governs the whole envelope structure. Finally, the exact number of solutions was determined for the one-fluid model
    corecore