35 research outputs found

    Disentangling water, ion and polymer dynamics in an anion exchange membrane

    Get PDF
    Semipermeable polymeric anion exchange membranes are essential for separation, filtration and energy conversion technologies including reverse electrodialysis systems that produce energy from salinity gradients, fuel cells to generate electrical power from the electrochemical reaction between hydrogen and oxygen, and water electrolyser systems that provide H2 fuel. Anion exchange membrane fuel cells and anion exchange membrane water electrolysers rely on the membrane to transport OH− ions between the cathode and anode in a process that involves cooperative interactions with H2O molecules and polymer dynamics. Understanding and controlling the interactions between the relaxation and diffusional processes pose a main scientific and critical membrane design challenge. Here quasi-elastic neutron scattering is applied over a wide range of timescales (100–103 ps) to disentangle the water, polymer relaxation and OH− diffusional dynamics in commercially available anion exchange membranes (Fumatech FAD-55) designed for selective anion transport across different technology platforms, using the concept of serial decoupling of relaxation and diffusional processes to analyse the data. Preliminary data are also reported for a laboratory-prepared anion exchange membrane especially designed for fuel cell applications

    Membranes for fuel cells : structure-transport relation in models materials

    No full text
    L’optimisation des performances d’une pile à combustible (PEMFC) requiert la compréhension microscopique des mécanismes de transport de l’eau et du proton confinés au sein de la membrane électrolyte polymère. La membrane est un matériau nanostructuré chargé, caractérisé par une dynamique de l’eau et du proton complexe et multi-échelle étroitement corrélée à la morphologie confinante. Nous nous sommes intéressés à la relation structure – transport dans i) L’Aquivion, un ionomère perfluorosulfonique récent présentant de bonnes performances en pile, ii) des systèmes «modèles» auto-assemblés de tensioactifs perfluorés formant des phases lamellaires et hexagonales et iii) une nouvelle membrane hybride préparée par dopage en tensioactif. La nano-structuration des différents systèmes a été étudiée par diffusion de rayonnement (X et neutrons), pour caractériser l’évolution de la structure (géométrie de la matrice hôte, taille de confinement) avec l’hydratation. Ensuite, nous avons sondé la dynamique de l’eau à l’échelle moléculaire (de la picoseconde à la nanoseconde) par diffusion quasi-élastique des neutrons (QENS) et à l’échelle micrométrique par RMN à gradients de champs pulsés. La comparaison membranes commerciales / systèmes modèles permet de discuter l’impact de la connectivité, du confinement et de la géométrie sur le transport ionique. Enfin, des membranes hybrides à fort potentiel ont été obtenues par dopage du Nafion et de l’Aquivion avec des tensioactifs. Ces nouveaux matériaux ouvrent une voie prometteuse pour la préparation de membranes polymères fortement anisotropes avec des chemins de conduction préférentiellement orientés.The optimization of the Fuel Cell’s performances (PEMFC) requires a microscopic understanding of the water and proton’s transport mechanism, which are confined in a polymer electrolyte membrane. The latter is nanostructured, charged and characterized by a complex and multi-scale water and proton dynamics, closely correlated to the confining morphology. We studied the structure-transport interplay in i) the Aquivion, a recent perfluorosulfonic ionomer exhibiting good performances in fuel cell, ii) “model” systems of perfluorosulfonic surfactants, which self-assemble in lamellar and hexagonal phases and iii) a new hybrid membrane doped with surfactant. The nanostructuration of the different systems has been studied by neutron and X-ray scattering, to characterize the structural evolution (host matrix geometry, confinement sizes) with hydration. Then, we probe the water dynamics at the molecular level (from picosecond to nanosecond) with Quasi-Elastic Neutron Scattering (QENS) and at the micrometric scale with Pulsed Field Gradient NMR. The comparison of commercial membranes and model systems bring new insight on the impact of the connectivity, the confinement and the geometry, on the ionic transport. Finally, high potential hybrid membranes have been obtained by doping Nafion and Aquivion with surfactants. Those new materials open a promising way for the preparation of highly anisotropic polymer membrane, with conducting path preferentially oriented

    Relation structure - transport dans des membranes et matériaux modèles pour pile à combustible

    Get PDF
    The optimization of the Fuel Cell's performances (PEMFC) requires a microscopic understanding of the water and proton's transport mechanism, which are confined in a polymer electrolyte membrane. The latter is nanostructured, charged and characterized by a complex and multi-scale water and proton dynamics, closely correlated to the confining morphology. We studied the structure-transport interplay in i) the Aquivion, a recent perfluorosulfonic ionomer exhibiting good performances in fuel cell, ii) "model" systems of perfluorosulfonic surfactants, which self-assemble in lamellar and hexagonal phases and iii) a new hybrid membrane doped with surfactant. The nanostructuration of the different systems has been studied by neutron and X-ray scattering, to characterize the structural evolution (host matrix geometry, confinement sizes) with hydration. Then, we probe the water dynamics at the molecular level (from picosecond to nanosecond) with Quasi-Elastic Neutron Scattering (QENS) and at the micrometric scale with Pulsed Field Gradient NMR. The comparison of commercial membranes and model systems bring new insight on the impact of the connectivity, the confinement and the geometry, on the ionic transport. Finally, high potential hybrid membranes have been obtained by doping Nafion and Aquivion with surfactants. Those new materials open a promising way for the preparation of highly anisotropic polymer membrane, with conducting path preferentially oriented.L'optimisation des performances d'une pile à combustible (PEMFC) requiert la compréhension microscopique des mécanismes de transport de l'eau et du proton confinés au sein de la membrane électrolyte polymère. La membrane est un matériau nanostructuré chargé, caractérisé par une dynamique de l'eau et du proton complexe et multi-échelle étroitement corrélée à la morphologie confinante. Nous nous sommes intéressés à la relation structure - transport dans i) L'Aquivion, un ionomère perfluorosulfonique récent présentant de bonnes performances en pile, ii) des systèmes " modèles " auto-assemblés de tensioactifs perfluorés formant des phases lamellaires et hexagonales et iii) une nouvelle membrane hybride préparée par dopage en tensioactif. La nano-structuration des différents systèmes a été étudiée par diffusion de rayonnement (X et neutrons), pour caractériser l'évolution de la structure (géométrie de la matrice hôte, taille de confinement) avec l'hydratation. Ensuite, nous avons sondé la dynamique de l'eau à l'échelle moléculaire (de la picoseconde à la nanoseconde) par diffusion quasi-élastique des neutrons (QENS) et à l'échelle micrométrique par RMN à gradients de champs pulsés. La comparaison membranes commerciales / systèmes modèles permet de discuter l'impact de la connectivité, du confinement et de la géométrie sur le transport ionique. Enfin, des membranes hybrides à fort potentiel ont été obtenues par dopage du Nafion et de l'Aquivion avec des tensioactifs. Ces nouveaux matériaux ouvrent une voie prometteuse pour la préparation de membranes polymères fortement anisotropes avec des chemins de conduction préférentiellement orientés

    Inelastic and quasi-elastic neutron scattering. Application to soft-matter

    No full text
    Microscopic dynamical events control many of the physical processes at play in condensed matter: transport, magnetism, catalysis and even function of biological assemblies. Inelastic (INS) and Quasi-Elastic Neutron Scattering (QENS) are irreplaceable probes of these phenomena. These experimental techniques reveal the displacements of atoms and molecules over distances spanning from angstroms to a few tens of nanometers, on time scales ranging from a fraction of picoseconds to microseconds. In this context, the different INS and QENS machines (Time-of-Flight (ToF), Backscattering (BS) and Neutron spin-echo (NSE)) stand at a central position. After introducing an underlying basic theoretical toolbox for neutron scattering, the principles and key elements of a ToF measurement are described. While, here, we mainly focus on disk choppers spectrometers, all the INS/QENS instruments share a common ground: they directly and simultaneously probe correlation functions in both time and space, so that the scattering vector (Q) dependence of the systems characteristic time(s) can be measured. To illustrate, the potentialities of the technique in the field of soft-matter, we show a multiscale approach of the dynamics of a polymer melt. The system is probed from the molecular to the mesoscopic scale (1 ps to 0.6 μs and 0.1 to 40 nm), in bulk and under nanometric confinement. We address the different dynamical modes of a high mass entangled polymer chain: local monomer dynamics, Rouse modes up to the reptation process. This study exemplifies that, used in conjunction with hydrogen/deuterium isotopic effects, high resolution QENS can be bridged to the Zero Average Contrast (ZAC) method to probe, in a non destructive way, the dynamics of a single polymer chain in bulk but also under severe nanometric confinement. Connection and complementarity of the neutron derived analysis with Pulsed-Field Gradient and Relaxation NMR techniques are discussed

    Spin and lattice dynamics in the two-singlet system Tb 3 Ga 5 O 12

    No full text
    International audienceWe address the issue of the origin of the phonon thermal Hall effect in Tb3Ga5O12, an intriguing propertypresumed to originate from magnetoelastic properties, and magnified in this compound by the non-Kramersnature of Tb3+ ions. Using neutron scattering, we have explored both the spin and lattice dynamics of Tb3Ga5O12.Our experimental results show that the transition toward the magnetic ground state, below TN = 280 mK,is driven by the softening of an exciton, as expected in a two-singlet system like Tb3Ga5O12. Low-energyexcitations in the ordered phase are still excitons, whose dispersion throughout the Brillouin zone is drivenby magnetic interactions. We have also discovered a mixing between specific phonon and exciton modes,this hybridization being evidenced through an intensity anomaly of the transverse acoustic phonons, as theycross low-energy crystal field excitations. Those experimental results can be comprehended by random phaseapproximation calculations, involving a Hamiltonian based on crystal electric field, dipolar interactions, and acoupling between phonons and the quadrupolar 4 f electronic density

    Inelastic and quasi-elastic neutron scattering. Application to soft-matter

    No full text
    Microscopic dynamical events control many of the physical processes at play in condensed matter: transport, magnetism, catalysis and even function of biological assemblies. Inelastic (INS) and Quasi-Elastic Neutron Scattering (QENS) are irreplaceable probes of these phenomena. These experimental techniques reveal the displacements of atoms and molecules over distances spanning from angstroms to a few tens of nanometers, on time scales ranging from a fraction of picoseconds to microseconds. In this context, the different INS and QENS machines (Time-of-Flight (ToF), Backscattering (BS) and Neutron spin-echo (NSE)) stand at a central position. After introducing an underlying basic theoretical toolbox for neutron scattering, the principles and key elements of a ToF measurement are described. While, here, we mainly focus on disk choppers spectrometers, all the INS/QENS instruments share a common ground: they directly and simultaneously probe correlation functions in both time and space, so that the scattering vector (Q) dependence of the systems characteristic time(s) can be measured. To illustrate, the potentialities of the technique in the field of soft-matter, we show a multiscale approach of the dynamics of a polymer melt. The system is probed from the molecular to the mesoscopic scale (1 ps to 0.6 μs and 0.1 to 40 nm), in bulk and under nanometric confinement. We address the different dynamical modes of a high mass entangled polymer chain: local monomer dynamics, Rouse modes up to the reptation process. This study exemplifies that, used in conjunction with hydrogen/deuterium isotopic effects, high resolution QENS can be bridged to the Zero Average Contrast (ZAC) method to probe, in a non destructive way, the dynamics of a single polymer chain in bulk but also under severe nanometric confinement. Connection and complementarity of the neutron derived analysis with Pulsed-Field Gradient and Relaxation NMR techniques are discussed

    Water sub-diffusion in membranes for fuel cells.

    No full text
    International audienceWe investigate the dynamics of water confined in soft ionic nano-assemblies, an issue critical for a general understanding of the multi-scale structure-function interplay in advanced materials. We focus in particular on hydrated perfluoro-sulfonic acid compounds employed as electrolytes in fuel cells. These materials form phase-separated morphologies that show outstanding proton-conducting properties, directly related to the state and dynamics of the absorbed water. We have quantified water motion and ion transport by combining Quasi Elastic Neutron Scattering, Pulsed Field Gradient Nuclear Magnetic Resonance, and Molecular Dynamics computer simulation. Effective water and ion diffusion coefficients have been determined together with their variation upon hydration at the relevant atomic, nanoscopic and macroscopic scales, providing a complete picture of transport. We demonstrate that confinement at the nanoscale and direct interaction with the charged interfaces produce anomalous sub-diffusion, due to a heterogeneous space-dependent dynamics within the ionic nanochannels. This is irrespective of the details of the chemistry of the hydrophobic confining matrix, confirming the statistical significance of our conclusions. Our findings turn out to indicate interesting connections and possibilities of cross-fertilization with other domains, including biophysics. They also establish fruitful correspondences with advanced topics in statistical mechanics, resulting in new possibilities for the analysis of Neutron scattering data

    : Porous electrolyte membrane, manufacturing process thereof and electrochemical devices comprising same

    No full text
    Membrane poreuse à électrolyte comprenant une première surface principale (21) et une deuxième surface principale (22) séparées par une épaisseur (23) dans laquelle : - des nanotubes de carbone, définissant des pores ou canaux traversant (24) ouverts à leurs deux extrémités (25,26), d'un diamètre inférieur ou égal à 100 nm, orientés dans le sens de l'épaisseur (23) de la membrane et tous substantiellement parallèles, sur la totalité de l'épaisseur (23) de la membrane, relient la première surface principale (21) et la deuxième surface principale (22); - les nanotubes de carbone sont séparés par un espace, et ledit espace entre les nanotubes de carbone est totalement rempli par au moins un matériau solide; et - un électrolyte est confiné à l'intérieur des nanotubes de carbone. Procédé de préparation de cette membrane. Dispositif électrochimique, tel qu'un accumulateur au lithium comprenant ladite membrane à électrolyte

    QENS investigation of proton confined motions in hydrated perfluorinated sulfonic membranes and self-assembled surfactants

    No full text
    International audienceWe report on QuasiElastic Neutron Scattering (QENS) investigations of the dynamics of protons and water molecules confined in nanostructured perfluorinated sulfonic acid (PFSA) materials, namely a commercial Aquivion membrane and the perfluorooctane sulfonic acid (PFOS) surfactant. The former is used as electrolyte in low-temperature fuel cells, while the latter forms mesomorphous self-assembled phases in water. The dynamics was investigated as a function of the hydration level, in a wide time range by combining time-of-flight and backscattering incoherent QENS experiments. Analysis of the quasielastic broadening revealed for both systems the existence of localized translational diffusive motions, fast rotational motions and slow hopping of protons in the vicinity of the sulfonic charges. The characteristic times and diffusion coefficients have been found to exhibit a very similar behaviour in both membrane and surfactant structures. Our study provides a comprehensive picture of the proton motion mechanisms and the dynamics of confined water in model and real PFSA nanostructures
    corecore