393 research outputs found

    1-Mesitylmethyl-1Hbenzotriazole 3-oxide

    Get PDF
    In the title compound, C16H17N3O, the benzotriazole ring forms a dihedral angle of 77.25 (6)° with the phenyl ring. The benzotriazole ring is essentially planar with a maximum deviation of 0.012 (19) Å. Weak inter­molecular C—H⋯O hydrogen bonds form R 2 2(10) motifs. The crystal packing is consolidated by π—π inter­actions with centroid–centroid distances of 3.5994 (12) Å together with very weak C—H⋯π inter­actions

    Level densities and γ\gamma-ray strength functions in 170,171,172^{170,171,172}Yb

    Full text link
    Level densities and radiative strength functions in 171^{171}Yb and 170^{170}Yb nuclei have been measured using the 171^{171}Yb(3^3He,3^3Heγ^\prime\gamma)171^{171}Yb and 171^{171}Yb(3^3He,αγ\alpha\gamma)170^{170}Yb reactions. New data on 171^{171}Yb are compared to a previous measurement for 171^{171}Yb from the 172^{172}Yb(3^3He,αγ\alpha\gamma)171^{171}Yb reaction. Systematics of level densities and radiative strength functions in 170,171,172^{170,171,172}Yb are established. The entropy excess in 171^{171}Yb relative to the even-even nuclei 170,172^{170,172}Yb due to the unpaired neutron quasiparticle is found to be approximately 2kBk_B. Results for the radiative strength function from the two reactions lead to consistent parameters characterizing the ``pygmy'' resonances. Pygmy resonances in the 170,172^{170,172}Yb populated by the (3^3He,α\alpha) reaction appear to be split into two components for both of which a complete set of resonance parameters are obtained.Comment: 8 pages, 7 figure

    Maria Auxiliadora Hospital in Lima, Peru as a model for neurosurgical outreach to international charity hospitals

    Get PDF
    A myriad of geopolitical and financial obstacles have kept modern neurosurgery from effectively reaching the citizens of the developing world. Targeted neurosurgical outreach by academic neurosurgeons to equip neurosurgical operating theaters and train local neurosurgeons is one method to efficiently and cost effectively improve sustainable care provided by international charity hospitals. The International Neurosurgical Children’s Association (INCA) effectively improved the available neurosurgical care in the Maria Auxiliadora Hospital of Lima, Peru through the advancement of local specialist education and training. Neurosurgical equipment and training were provided for the local neurosurgeons by a mission team from the University of California at San Diego. At the end of 3 years, with one intensive week trip per year, the host neurosurgeons were proficiently and independently applying microsurgical techniques to previously performed operations, and performing newly learned operations such as neuroendoscopy and minimally invasive neurosurgery. Our experiences may serve as a successful template for the execution of other small scale, sustainable neurosurgery missions worldwide

    Bright triplet excitons in lead halide perovskites

    Get PDF
    Nanostructured semiconductors emit light from electronic states known as excitons[1]. According to Hund's rules[2], the lowest energy exciton in organic materials should be a poorly emitting triplet state. Analogously, the lowest exciton level in all known inorganic semiconductors is believed to be optically inactive. These 'dark' excitons (into which the system can relax) hinder light-emitting devices based on semiconductor nanostructures. While strategies to diminish their influence have been developed[3-5], no materials have been identified in which the lowest exciton is bright. Here we show that the lowest exciton in quasi-cubic lead halide perovskites is optically active. We first use the effective-mass model and group theory to explore this possibility, which can occur when the strong spin-orbit coupling in the perovskite conduction band is combined with the Rashba effect [6-10]. We then apply our model to CsPbX3 (X=Cl,Br,I) nanocrystals[11], for which we measure size- and composition-dependent fluorescence at the single-nanocrystal level. The bright character of the lowest exciton immediately explains the anomalous photon-emission rates of these materials, which emit 20 and 1,000 times faster[12] than any other semiconductor nanocrystal at room[13-16] and cryogenic[17] temperatures, respectively. The bright exciton is further confirmed by detailed analysis of the fine structure in low-temperature fluorescence spectra. For semiconductor nanocrystals[18], which are already used in lighting[19,20], lasers[21,22], and displays[23], these optically active excitons can lead to materials with brighter emission and enhanced absorption. More generally, our results provide criteria for identifying other semiconductors exhibiting bright excitons with potentially broad implications for optoelectronic devices.Comment: 14 pages and 3 figures in the main text, Methods and extended data 16 pages which include 11 figures, and supporting information 28 page

    Speech Communication

    Get PDF
    Contains reports on three research projects.National Institutes of Health (Grant 2 ROI NS04332)National Institutes of Health (Training Grant 5 T32 NS07040)C. J. LeBel FellowshipsNational Institutes of Health (Grant 5 RO1 NS13028)National Science Foundation (Grant BNS76-80278)National Science Foundation (Grant BNS77-26871

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Treatment of HCV with ABT-450/r-ombitasvir and dasabuvir with ribavirin

    Get PDF
    BACKGROUND The interferon-free combination of the protease inhibitor ABT-450 with ritonavir (ABT-450/r) and the NS5A inhibitor ombitasvir (also known as ABT-267) plus the nonnucleoside polymerase inhibitor dasabuvir (also known as ABT-333) and ribavirin has shown efficacy against the hepatitis C virus (HCV) in patients with HCV genotype 1 infection. In this phase 3 trial, we evaluated this regimen in previously untreated patients with HCV genotype 1 infection and no cirrhosis

    Overview of the Canadian pediatric end-stage renal disease database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Performing clinical research among pediatric end-stage renal disease patients is challenging. Barriers to successful initiation and completion of clinical research projects include small sample sizes and resultant limited statistical power and lack of longitudinal follow-up for hard clinical end-points in most single center studies.</p> <p>Description</p> <p>Existing longitudinal organ failure disease registry and administrative health datasets available within a universal access health care system can be used to study outcomes of end-stage renal disease among pediatric patients in Canada. To construct the Canadian Pediatric End-Stage Renal Disease database, registry data were linked to administrative health data through deterministic linkage techniques creating a research database which consists of socio-demographic variables, clinical variables, all-cause hospitalizations, and relevant outcomes (death and renal allograft loss) for this patient population. The research database also allows study of major cardiovascular events using previously validated administrative data definitions.</p> <p>Conclusion</p> <p>Organ failure registry linked to health administrative data can be a powerful tool to perform longitudinal studies in pediatric end-stage renal disease patients. The rich clinical and demographic information found in this database will facilitate study of important medical and non-medical risk factors for death, graft loss and cardiovascular disease among pediatric end-stage renal disease patients.</p

    Early In Vitro Differentiation of Mouse Definitive Endoderm Is Not Correlated with Progressive Maturation of Nuclear DNA Methylation Patterns

    Get PDF
    The genome organization in pluripotent cells undergoing the first steps of differentiation is highly relevant to the reprogramming process in differentiation. Considering this fact, chromatin texture patterns that identify cells at the very early stage of lineage commitment could serve as valuable tools in the selection of optimal cell phenotypes for regenerative medicine applications. Here we report on the first-time use of high-resolution three-dimensional fluorescence imaging and comprehensive topological cell-by-cell analyses with a novel image-cytometrical approach towards the identification of in situ global nuclear DNA methylation patterns in early endodermal differentiation of mouse ES cells (up to day 6), and the correlations of these patterns with a set of putative markers for pluripotency and endodermal commitment, and the epithelial and mesenchymal character of cells. Utilizing this in vitro cell system as a model for assessing the relationship between differentiation and nuclear DNA methylation patterns, we found that differentiating cell populations display an increasing number of cells with a gain in DNA methylation load: first within their euchromatin, then extending into heterochromatic areas of the nucleus, which also results in significant changes of methylcytosine/global DNA codistribution patterns. We were also able to co-visualize and quantify the concomitant stochastic marker expression on a per-cell basis, for which we did not measure any correlation to methylcytosine loads or distribution patterns. We observe that the progression of global DNA methylation is not correlated with the standard transcription factors associated with endodermal development. Further studies are needed to determine whether the progression of global methylation could represent a useful signature of cellular differentiation. This concept of tracking epigenetic progression may prove useful in the selection of cell phenotypes for future regenerative medicine applications
    corecore