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S1. EXCITON FINE STRUCTURE IN THE EFFECTIVE-MASS MODEL

A. Four-band model

To calculate optical transition energies, exciton fine structure, polarization properties, as

well as exciton and trion radiative lifetimes for perovskite nanocrystals, we need a multi-

band effective-mass Hamiltonian that describes the carrier energies in the vicinity of the

bandgap edge in bulk perovskite semiconductors. Effective energy-band parameters for this

Hamiltonian can be extracted from the predicted electron and hole dispersion obtained via

first-principle descriptions of the bulk energy structure for these semiconductors. Then, all

the critical characteristics of perovskite nanocrystals can be calculated within this multi-

band effective-mass Hamiltonian. The goal of this and the next subsection is to develop this

effective-mass Hamiltonian.

The R-point of the Brillouin zone is isomorphic to the Γ -point in cubic semiconductors

[S1]. As a result, the dispersion of electrons and holes at the R-point is described by the

familiar 8x8 k · p Hamiltonian matrix that characterizes the band edge of direct-gap cubic

semiconductors at the Γ -point. In the perovskites studied here, due to large spin–orbit

coupling, a good description of the electron and hole dispersion is obtained by extracting

the 4x4 part related to the Γ−6 and Γ+
6 bands of the conduction and valence bands [S2, S3].

Using the same standard semiconductor notation [S4, S5] introduced in the main text, the

Bloch wavefunctions of the corresponding band-edge states can be written as:

| ⇑〉e = − 1√
3

[(|X〉+ i|Y 〉)| ↓〉+ |Z〉| ↑〉]

| ⇓〉e =
1√
3

[|Z〉| ↓〉 − (|X〉 − i|Y 〉)| ↑〉]

| ↑〉h = |S〉| ↑〉

| ↓〉h = |S〉| ↓〉 .

(S1)

Note the different phases of the basis functions in comparison with ref. S2. The Hamiltonian

in our basis is

Ĥ =


Ec + γe

p2

2m0
0 − 1

m0
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 , (S2)
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where p̂ is the momentum operator, P = −i〈S|pz|Z〉 is the Kane matrix element, p± =

px ± ipy , p2 = p2x + p2y + p2z , Ec,v are the band-edge energies, and γe,h are the remote-

band contributions to the electron and hole effective masses. Note that in the perovskites

considered the band structure is reversed compared to many typical semiconductors in the

sense that the valence band (instead of the conduction band) is s -like. The energy gap,

Eg = Ec − Ev , is connected with the energy gap E ′g and the spin–orbit splitting ∆ of the

standard 8-band model as Eg = E ′g − |∆| , because ∆ in these perovskites is negative.

The energy spectrum of the carriers is isotropic at the R-point of the Brillouin zone and

can be easily found by taking p along the z axis. In this case, the 4×4 matrix is composed

of two identical 2× 2 blocks decoupled from each other, determined as, Eg − E +
γe

2m0

p2
i√
3

P

m0

p

− i√
3

P

m0

p −E − γh
2m0

p2

 . (S3)

The usual procedures lead to the dispersion relation

E± =
1

2

[
Eg + (γe − γh)

p2

2m0

]
±

√
1

4

[
Eg + (γe + γh)

p2

2m0

]2
+ Ep

p2

6m0

, (S4)

where we have used the Kane energy Ep = 2P 2/m0 .

B. Estimating the energy-band parameters of the four-band model

To describe the energy spectra and radiative lifetimes in nanocrystals we need the pa-

rameters Ep and γe,h of the four-band model for the cubic perovskites, Eq. (S4). We

determine these parameters by fitting the first-principles calculations presented in Fig. 1b

in the main text and Extended Data Fig. 1. In particular, Ep and γe,h are connected to

the effective masses of the electrons and holes, me and mh , at their respective band edges

by the following relationships:

m0

me

= γe +
Ep
3Eg

,
m0

mh

= γh +
Ep
3Eg

. (S5)

These expressions are derived from the parabolic approximation to Eq.(S4) applied for

small p and using Ep � Eg . To extract Ep , we take the asymptotic limit of Eq.(S4)

at large p , such that p2Ep � 6m0E
2
g . Assuming that Ep is sufficiently large that p2 �

m0Ep/ (γe ± γh) , which is satisfied for a very wide range of energies in the conduction and
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CsPbCl3 CsPbBr3 CsPbI3

Eg exp (eV) 3.04 [S6] 2.36 [S6] 1.67 [S7]

Ep (eV) 40.1 39.9 41.6

γe 0.77 1.85 3.27

γh 1.51 2.21 2.58

me/m0 0.194 0.134 0.086

mh/m0 0.170 0.128 0.095

εin exp. 4.5 4.8 5.0

TABLE S1. Parameters of the four-band model, describing the dispersion of the conduction and

valence bands in the vicinity of the R-point of the Brillouin zone, and the high-frequency dielec-

tric constants of the CsPbX 3 (X=Cl, Br, and I) perovskites used in calculations of the exciton

lifetimes. The band parameters were extracted from first-principles calculations of the perovskite

band structures. The high-frequency dielectric constants were obtained from an analysis of the

exciton binding energy and the refractive index.

valence bands, we obtain,

E ≈ 1

2
Eg ±

√
Ep

6m0

p,

(
p2 �

6m0E
2
g

Ep

)
. (S6)

Extended Data Fig. 7 shows the slope
√
Ep/6m0 according to Eq.(S6), which is calculated

as the energy difference E − Eg/2 divided by the corresponding difference in momentum,

p = ~∆k , where ∆k is the wave number shown in nm −1 . The results of this fitting

procedure are summarized in the Table S1 along with the energy gaps Eg of the bulk

perovskites CsPbX 3 taken from experimental data.

The last parameter needed to analyze the exciton radiative lifetimes is the high-frequency

dielectric constant for each material. Using the effective masses summarized in Table S1 we

can calculate the high-frequency dielectric constant from the exciton Rydberg when it is

known. Taking the measured Rydberg for CsPbCl 3 and CsPbBr 3 , 60 meV and 34 meV,

respectively [S6], we find εin = 4.5 for CsPbCl 3 and εin = 4.8 in CsPbBr 3 . The Rydberg

has not been measured for CsPbI 3 . Noting that the dielectric constants determined for

CsPbCl 3 and CsPbBr 3 are very close to those measured in methylammonium (MA) lead

halide perovskites [S8] ( εin = 4.0 in MAPbCl 3 and εin = 4.7 in MAPbBr 3 ), we have taken

the dielectric constant of MAPbI 3 , εin = 5.0 [S8], for CsPbI 3 . The dielectric constants
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and the energy-band parameters from Table S1 are used in the calculations of the radiative

lifetimes.

C. Exciton fine structure in nanocrystals with cubic lattice structure

The total wavefunction of the electron and hole states in nanocrystals can be found using

the parabolic-band effective-mass approximation [S9, S10]. They generally can be written

as a product of the Bloch functions defined in Eq.(S1) and envelope functions, i.e. products

of the form: Ψe
⇑,⇓(re) = Fe(re)| ⇑,⇓〉e and Ψh

↑,↓(rh) = Fh(rh)| ↑, ↓〉h for electron and hole

states, respectively, where Fe,h are the electron or hole envelope functions.

The total exciton wavefunctions in nanocrystals are the product of the Bloch functions

defined in Eqs.(2) and (3) in the main text and the exciton envelope function v(re, rh) ,

which describes spatial motion of the exciton confined in the nanocrystal. The resulting

wavefunctions of the exciton Ψex
J,Jz

with momentum J and momentum projection Jz have

the following form:

Ψex
0,0 =

1√
2

(| ⇓〉e| ↑〉h − | ⇑〉e| ↓〉h) v(re, rh) , Ψex
1,+1 = | ⇑〉e| ↑〉hv(re, rh) ,

Ψex
1,0 =

1√
2

(| ⇓〉e| ↑〉h + | ⇑〉e| ↓〉h) v(re, rh) , Ψex
1,−1 = | ⇓〉e| ↓〉hv(re, rh) . (S7)

The electron–hole exchange interaction [S1], Hexch = −αexc Ω0(σ
e · σh)δ(re − rh) , where

σe,h are the electron and hole Pauli operators, αexc is the exchange constant, and Ω0 is

the volume of the unit cell, conserves the two-particle angular momentum, J = 1
2
(σe+σh) .

This exchange interaction splits the fourfold degenerate exciton ground state into an optically

passive singlet ( J = 0 ) and a threefold degenerate optically active triplet state ( J = 1 with

three momentum projections Jz = ±1, 0 ).

The singlet–triplet splitting of the exciton levels can be shown to be equal to 4η , where

η = αexcΘ , with Θ = Ω0

∫
d3rv2(r, r) . It is known that the splitting is enhanced by spatial

confinement [S11], which is included via the parameter Θ . In the strong-confinement regime:

Θ ∼ Ω0/V and is inversely proportional to the nanocrystal volume, V . In the bulk and in

the weak-confinement regime: Θ = Ω0/πa
3
B .

It is easy to demonstrate that the singlet level |Ψ0,0〉 is optically passive. This is because

the transition-dipole matrix element taken between this state and the vacuum state |0〉 =

δ(re − rh) is zero: 〈0|p̂|Ψ0,0〉 = 0 . In the optical matrix element, p̂ acts only on the
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conduction-band Bloch functions. Thus, the exciton wavefunction |Ψ0,0〉 from Eq.(2) in the

main text should be transformed to the electron–electron representation. In this case, using

the time-reversal operator K̂ for transformation of the hole wavefunction to the electron

form, one can show that

〈0|p̂|Ψ0,0〉 =

∫
d3r

1√
2

(
(K̂|S〉| ↑〉)p̂ 1√

3
[|Z〉| ↓〉 − (|X〉 − i|Y 〉)| ↑〉]

− (K̂|S〉| ↓〉)p̂
(
− 1√

3
[(|X〉+ i|Y 〉)| ↓〉+ |Z〉| ↑〉]

))
=

1√
6

∫
d3r (〈S|〈↓ |p̂ [|Z〉| ↓〉 − (|X〉 − i|Y 〉)| ↑〉]

+ 〈S|〈↑ |p̂
(
− [(|X〉+ i|Y 〉)| ↓〉+ |Z〉| ↑〉]

)
=

1√
6

∫
d3r (〈S|p̂|Z〉 − 〈S|p̂|Z〉) = 0 .

(S8)

Here we used the following properties of the time-reversal operator K̂ : K̂| ↑〉 = | ↓〉 and

K̂| ↓〉 = −| ↑〉 . Similar calculations show that all three triplet states are optically active.

D. The order of the singlet and triplet excitons in perovskite nanocrystals

The sign of the exchange-interaction constant αexc affects the level order of the singlet

and triplet exciton states. In the absence of spin–orbit coupling, both αexc and η are

always positive, resulting in an optically passive spin-triplet exciton ground state. This is

the case for organic semiconductors. When strong spin–orbit coupling exists in only one

band (for which the corresponding band-edge Bloch functions are described by Eq. 1 of

the main text and above), the parameters αexc and η are negative leading to an optically

passive singlet exciton ground state. Ignoring the Rashba effect for the moment (see the

next subsection, Section S1.E), this optically passive singlet would be the expected exciton

ground state for perovskites and perovskite nanocrystals [S12–S16]. The splitting in this

case was intensively analyzed theoretically [S17–S19] in connection with CuCl, for which

the conduction and valence band edges have symmetry Γ6 and Γ7 , respectively, with Bloch

functions as in Eq. (S1), but with the band labels reversed. The triplet–singlet splitting,

4η can be expressed in terms of the Bloch functions of the conduction and valence bands

[S18]: 4η = (2/3)(Θ/Ω2
0)
∫
d3r1d

3r2S
∗(r1)X

∗(r2)V (r1 − r2)S(r2)X(r1) , where the Bloch

functions are normalized to the unit-cell volume, Ω0 , the integrals are taken over one unit
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TABLE S2. Calculated exchange constant αexc , Θ , and singlet–triplet splitting 4η = 4αexcΘ in

CsPbX 3 (X=Cl, Br, and I).

Perovskite 4αexc(meV) Θ singlet–triplet splitting, 4η (meV)

CsPbCl3 354 0.00313 1.11

CsPbBr3 267 0.00110 0.29

CsPbI3 204 0.00038 0.078

cell, and V (r1 − r2) = e2/(εin|r1 − r2|) is the Coulomb potential between two electrons.

This exchange integral is always positive and the optically active triplet always has higher

energy.

To quantify the exchange splitting for perovskite nanocrystals (still ignoring the Rashba

effect), we conducted first-principles calculations of the band-edge Bloch functions using the

Heyd-Scuseria-Ernzerhof HSE06 hybrid functionals, which mix exact Hartree-Fock exchange

with conventional DFT (see Methods). From these wavefunctions and the expression above

for η we calculated the exchange constant αexc for all three CsPbX 3 halide perovskites

(X=Cl, Br, and I). The resulting short-range exchange splittings of the singlet–triplet exciton

are listed in the third column of Table S2.

Our experimentally studied CsPbX 3 nanocrystals are known to exhibit an orthorhombic

lattice distortion [S20]. The reduction of the nanocrystal symmetry generally splits the

threefold degenerate triplet states into three exciton sublevels. To find these splittings in

CsPbBr 3 nanocrystals, we used G 0 W 0 first-principle calculations (see Methods). Our

calculations predict an expected orthorhombic splitting for the triplet with ∆1 = 1.9 ∗

0.004388 = 0.008 meV and ∆2 = 3.9 ∗ 0.004388 = 0.017 meV (see inset to Fig. 3i in the

main text for definitions of ∆1 and ∆2 ). These splittings are hundreds of times smaller

than the splittings measured experimentally (∼ 1 meV) in our perovskite nanocrystals (see

Fig. 3 in the main text). This suggests that the orthorhombic distortion is not responsible

for the observed splittings.

E. Effect of Rashba terms on the exciton fine structure

We now consider the influence of the Rashba effect on the observed exciton fine structure.

This effect can arise due to inversion-symmetry breaking in CsPbBr 3 , for example due to
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the instability of Cs + ions in the lattice [S21]. Instabilities in the ion positions can result in

lattice polarization, which creates Rashba terms in the Hamiltonians describing the electrons

and holes.

The Rashba spin–orbit term was first written for wurtzite crystals [S22]. For electrons

and holes in a nanocrystal made from a cubic crystal lattice, the Rashba effect can be

described as [S23]:

Ĥc
R = αR,c[(σxpy − σypx)nz + (σzpx − σxpz)ny + (σypz − σzpy)nx] , (S9)

where αR,c represents either the conduction- or valence-band Rashba coefficient for nanocrys-

tals with cubic lattice structure (αeR,c and αhR,c , respectively), and σi are the projections

of the Pauli operators for the electron total momentum operator for J = 1/2 and for the

hole spin s = 1/2 , ( σei and σhi respectively). In Eq. (S9), nx,y,z are the projections on

the cubic axes of a unit vector n defining the direction of the symmetry breaking (see, for

example, the inset in Fig. 1c of the main text).

From Eq. (S9) we can write the most general Rashba Hamiltonian for nanocrystals with

orthorhombic symmetry:

Ĥo
R = αzR,xyσxpynz − αzR,yxσypxnz + αyR,zxσzpxny − α

y
R,xzσxpzny

+ αxR,yzσypznx − αxR,zyσzpynx . (S10)

As one can see from Eq. (S10), the Rashba effect for both electrons and holes is fully

described with six independent parameters: αz,e;hR,xy , αz,e;hR,yx , αy,e;hR,zx , αy,e;hR,xz , αx,e;hR,yz , and αx,e;hR,zy ,

respectively, which reflect the material properties and symmetry of the nanocrystal, while

again the projections nx, ny, nz of the unit vector n define the Rashba symmetry-breaking

direction. For calculations it is convenient to re-write the Rashba Hamiltonian in Eq. (S10)

acting on the exciton as a sum of the three terms Ĥo
R = Ĥxnx + Ĥyny + Ĥznz :

Ĥz = αz,eR,xyσ
e
xp

e
y − α

z,e
R,yxσ

e
yp
e
x + αz,hR,xyσ

h
xp

h
y − α

z,h
R,yxσ

h
yp

h
x ,

Ĥy = αy,eR,zxσ
e
zp
e
x − α

y,e
R,xzσ

e
xp

e
z + αy,hR,zxσ

h
z p

h
x − α

y,h
R,xzσ

h
xp

h
z ,

Ĥx = αx,eR,yzσ
e
yp
e
z − α

x,e
R,zyσ

e
zp
e
y + αx,hR,yzσ

h
yp

h
z − α

x,h
R,zyσ

h
z p

h
y . (S11)

The wavefunction of the exciton ground state in cube-shaped nanocrystals in the weak

confinement regime (which we use to approximate our experimental samples), can be written

as:

ΨJ,Jz
gr (R, r) = ψ100(r)Ψ0(R)UJ ,Jz (S12)
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Here ψ100(r) is the hydrogen-like function that describes the relative motion of the exciton

ground state with r = rh − re . For the ground state, the wavefunction of the exciton

relative motion can be written:

ψ100(r) = 2

(
1

aB

)3/2

e−r/aB Y0,0, (S13)

where aB = εin~2/(e2µ) is the exciton Bohr radius with µ = 1/[1/me+1/mh] as the reduced

exciton effective mass, and Y0,0 is the spherical harmonic with l = 0 . Ψ0(R) describes the

wavefunction of the exciton center-of-mass motion, with R = [mere +mhrh]/M , where me

and mh are the electron and hole effective masses, and M = me + mh . For the exciton

ground state, the wavefunction of the exciton center-of-mass motion can be written:

Ψ0(R) =

√
8

LxLyLz
cos(πX/Lx) cos(πY/Ly) cos(πZ/Lz), (S14)

where Lx , Ly , and Lz are the edge lengths of the cube-shaped nanocrystal. Finally UJ ,Jz

in Eq.(S12) is the spin part of the exciton function, which for J = 0 and J = 1 (singlet

and triplet states, respectively) can be written as:

|0, 0〉 =
1√
2

(| ⇑〉| ↓〉 − | ⇓〉| ↑〉) (S15)

|1,+1〉 = | ⇑〉| ↑〉, |1, 0〉 =
1√
2

(| ⇑〉| ↓〉+ | ⇓〉| ↑〉), |1,−1〉 = | ⇓〉| ↓〉 . (S16)

Corrections to the exciton ground state from the Rashba terms in Eqs. (S11) vanish

in first-order perturbation theory. In second-order perturbation theory, however, we find

corrections that describe coupling among the spin sublevels of the exciton. The resulting

coupling matrix contains spin–spin coupling terms and is similar in that respect to an effec-

tive exchange Hamiltonian. In second-order perturbation theory this matrix can be written

[S24]:

M
J ′,J ′

z
J,Jz

=
∑

m;J ′′,J ′′
z

〈ΨJ,Jz
gr |ĤR|ΨJ ′′,J ′′

z
m 〉〈ΨJ ′′,J ′′

z
m |ĤR|ΨJ ′,J ′

z
gr 〉

Egr − Em
, (S17)

where the sum goes over all intermediate spatial states m and all spin states J ′′ and J ′′z .

However, significant simplifications arise because the energies of the intermediate states in

this expression are independent of spin. One can sum over all intermediate J ′′, J ′′z states,

resulting in a 4x4 coupling matrix.
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To estimate the matrix in Eq. (S17) we take into account just the first few excited states

of the exciton center-of-mass and relative motions. In the later case, the wavefunction can

be written as:

Ψr;J,Jz
1m (R, r) = ψ21m(r)Ψ0(R)UJ ,Jz , (S18)

where ψ21m(r) is the hydrogen-like wavefunction of the 1P exciton level with angular mo-

mentum l = 1 and momentum projections m = 0,±1 . These wavefunctions can be written

as:

ψ21m(r) =
1

2
√

6

(
1

aB

)3/2
r

aB
e−r/2aB Y1,m(θ, φ) , (S19)

where Y1,m are the spherical harmonics with l = 1 [S24]. The energy distance for the 1P

level is 0.75e4µ/~2ε2in .

For the first three excited levels connected with the exciton center-of-mass motion we can

write:

ΨR;J,Jz
x,y,z (R, r) = ψ100(r)Ψx,y,z(R)UJ ,Jz , (S20)

where the excited wavefunction of the exciton center-of-mass motion Ψx,y,z can be written:

Ψx(R) =

√
8

LxLyLz
sin(2πX/Lx) cos(πY/Ly) cos(πZ/Lz),

Ψy(R) =

√
8

LxLyLz
cos(πX/Lx) sin(2πY/Ly) cos(πZ/Lz),

Ψz(R) =

√
8

LxLyLz
cos(πX/Lx) cos(πY/Ly) sin(2πZ/Lz). (S21)

The energy distances between the ground and excited exciton states are 3~2π2/2ML2
x ,

3~2π2/2ML2
y , and 3~2π2/2ML2

z , respectively.

Let us now calculate the effective electron–hole spin-coupling Hamiltonian created by the
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Rashba term. Substituting Ĥo
R into Eq. (S17) we obtain:

M
J ′,J ′

z
J,Jz

=

− 2me

M
(AcRme + ArRmh)

[
(α̃y,eR,zx)

2 + (α̃z,eR,yx)
2 + (α̃z,eR,xy)

2 + (α̃x,eR,zy)
2 + (α̃x,eR,yz)

2 + (α̃y,eR,xz)
2
]

− 2mh

M
(AcRmh + ArRme)

[
(α̃y,hR,zx)

2 + (α̃z,hR,yx)
2 + (α̃z,hR,xy)

2 + (α̃x,hR,zy)
2 + (α̃x,hR,yz)

2 + (α̃y,hR,xz)
2
]

− 2mhme

M
(AcR − ArR)

×
[ (
α̃z,eR,xyα̃

z,h
R,xy + α̃y,eR,xzα̃

y,h
R,xz

)
σexσ

h
x +

(
α̃x,eR,yzα̃

x,h
R,yz + α̃z,eR,yxα̃

z,h
R,yx

)
σeyσ

h
y

+
(
α̃y,eR,zxα̃

y,h
R,zx + α̃x,eR,zyα̃

x,h
R,zy

)
σezσ

h
z − α̃

y,e
R,xzα̃

x,h
R,yzσ

e
xσ

h
y − α̃

x,e
R,yzα̃

y,h
R,xzσ

e
yσ

h
x − α̃

z,e
R,xyα̃

x,h
R,zyσ

e
xσ

h
z

− α̃x,eR,zyα̃
z,h
R,xyσ

e
zσ

h
x − α̃

y,e
R,zxα̃

z,h
R,yxσ

e
zσ

h
y − α̃

z,e
R,yxα̃

y,h
R,zxσ

e
yσ

h
z

]
, (S22)

where, α̃z,e;hR,ij = αz,e;hR,ij nz , α̃y,e;hR,ij = αy,e;hR,ij ny , α̃x,e;hR,ij = αx,e;hR,ij nx , AcR = 128/(27π2) , and

ArR = (64/81
√

3)2 . The terms proportional to AcR and ArR come from the intermedi-

ate states connected with the exciton center-of-mass motion and the relative motion of the

electron and hole, respectively. The third term in Eq. (S22) consists of spin–spin coupling

terms and has the same form as the effective spin-dependent electron–hole exchange Hamil-

tonian. Such terms determine the fine structure of the band-edge exciton. One can see that

the contributions of the center-of-mass motion and the relative motion of the exciton have

different signs and result in a different level order. However, because AcR > ArR it is the

center-of-mass motion that determines the level order of the exciton.

The fine structure of the exciton is thus defined by the following matrix:

Ĥ = −(AcR − ArR)
2memh

M
×



| ⇑↑〉 | ⇑↓〉 | ⇓↑〉 | ⇓↓〉

α̃x,eR,zyα̃
x,h
R,zy + α̃y,eR,zxα̃

y,h
R,zx −α̃x,eR,zyα̃

z,h
R,xy + iα̃y,eR,zxα̃

z,h
R,yx −α̃z,eR,xyα̃

x,h
R,zy + iα̃z,eR,yxα̃

y,h
R,zx M14

−α̃x,eR,zyα̃
z,h
R,xy − iα̃

y,e
R,zxα̃

z,h
R,yx −α̃x,eR,zyα̃

x,h
R,zy − α̃

y,e
R,zxα̃

y,h
R,zx M23 α̃z,eR,xyα̃

x,h
R,zy − iα̃

z,e
R,yxα̃

y,h
R,zx

−α̃z,eR,xyα̃
x,h
R,zy − iα̃

z,e
R,yxα̃

y,h
R,zx M32 −α̃x,eR,zyα̃

x,h
R,zy − α̃

y,e
R,zxα̃

y,h
R,zx α̃x,eR,zyα̃

z,h
R,xy − iα̃

y,e
R,zxα̃

z,h
R,yx

M41 α̃z,eR,xyα̃
x,h
R,zy + iα̃z,eR,yxα̃

y,h
R,zx α̃x,eR,zyα̃

z,h
R,xy + iα̃y,eR,zxα̃

z,h
R,yx α̃x,eR,zyα̃

x,h
R,zy + α̃y,eR,zxα̃

y,h
R,zx


,

(S23)

where:

M14 = M∗
41 = α̃z,eR,xyα̃

z,h
R,xy − α̃

z,e
R,yxα̃

z,h
R,yx + (α̃y,eR,xz + iα̃x,eR,yz)(α̃

y,h
R,xz + iα̃x,hR,yz) ,

M23 = M∗
32 = α̃z,eR,xyα̃

z,h
R,xy + α̃z,eR,yxα̃

z,h
R,yx + (α̃y,eR,xz + iα̃x,eR,yz)(α̃

y,h
R,xz − iα̃

x,h
R,yz) .

(S24)

The exciton fine structure can be found analytically from Eq. (S23) in the case when

the Rashba anisotropy axis n is aligned along one symmetry axis of the nanocrystal (nx =
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ny = 0 , and |nz| = 1 ). In this case, the energy level structure and the level polarization

can be written:

Energy Polarization

εd = αz,eR,xyα
z,h
R,xy + αz,eR,yxα

z,h
R,yx dark = |d〉

εx = αz,eR,xyα
z,h
R,xy − α

z,e
R,yxα

z,h
R,yx |x〉

εy = −αz,eR,xyα
z,h
R,xy + αz,eR,yxα

z,h
R,yx |y〉

εz = −αz,eR,xyα
z,h
R,xy − α

z,e
R,yxα

z,h
R,yx |z〉 , (S25)

where the energy is in units of (AcR−ArR)(2memh/M) . As a result, if the Rashba coefficient

for both the electron, αi,eR,jk , and hole, αi,hR,jk , have the same sign, the upper exciton state

is the dark exciton, and the lowest of the three optically active states is polarized along

the anisotropy direction z. Generally, the two intermediate levels are split and have x

and y polarization. When the electron and hole Rashba coefficients have the same sign,

this means that the conduction band minimum and the valence band maximum have the

same angular-momentum texture. That is, the angular-momentum helicity at the band

extrema is the same [S25, S26]. Indeed, such co-helical textures have been found for certain

distortions of the hybrid metal halide perovskite MAPbI 3 using first-principles calculations

[S26]. In perovskite nanocrystals with cubic lattice symmetry, the Rashba coefficients can

in principle be estimated using expressions derived from third-order perturbation theory

within an extended Kane model [S27]. If only the near-band coupling (coupling between

the conduction and valence bands) is taken into account, the Rashba coefficients for the

electron and the hole would have opposite signs and therefore opposite angular-momentum

textures. However, they can take on the same sign if coupling to remote bands is accounted

for in quasi-degenerate (Lowdin) perturbation theory [S27]. This is consistent with the tight-

binding models of refs. S25 and S26 where it has been shown that the relative helicity of

the two bands in MAPbI 3 is controlled by the values of the sp and pp hopping parameters

and the octahedral distortions of the Pb and the halogen atoms.

However, in the case when αz,eR,xy = αz,eR,yx and αz,hR,xy = αz,hR,yx , which occurs in nanocrys-

tals with two equivalent symmetry axes, the x and y lines become degenerate and create a

circularly polarized doublet, with polarization x± iy . The eigenvalues from Eq. (S25) are

reduced to εx = εy = 0 and εz = −εd . This level structure we believe was observed recently

[S16]. The Rashba splitting between the two bright excitons in that case is described as
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2memh(A
c
R − ArR)εd/M .

Another analytical expression for the exciton fine structure can be found for the case

when nz = 0 and nx, ny 6= 0 . Diagonalization of the matrix described by Eq. (S23) gives

energy levels, again in units of 2memh(A
c
R − ArR)εd/M , which can be written as:

ε1 = α̃x,eR,zyα̃
x,h
R,zy + α̃y,eR,zxα̃

y,h
R,zx +Q ,

ε2 = α̃x,eR,zyα̃
x,h
R,zy + α̃y,eR,zxα̃

y,h
R,zx −Q ,

ε3 = −α̃x,eR,zyα̃
x,h
R,zy − α̃

y,e
R,zxα̃

y,h
R,zx +Q ,

ε4 = −α̃x,eR,zyα̃
x,h
R,zy − α̃

y,e
R,zxα̃

y,h
R,zx −Q , (S26)

where Q =
√

[(α̃y,eR,xz)
2 + (α̃x,eR,yz)

2][(α̃y,hR,xz)
2 + (α̃x,hR,yz)

2] . The corresponding eigenstates can

be written up to a normalization constant as:

|ψ1〉 =
i(α̃y,eR,xzα̃

y,h
R,xz + α̃x,eR,yzα̃

x,h
R,yz +Q)

−α̃x,eR,yzα̃
x,h
R,yz + α̃y,eR,xzα̃

y,h
R,xz

|d〉+ |z〉 ,

|ψ2〉 =
i(−α̃y,eR,xzα̃

y,h
R,xz − α̃

x,e
R,yzα̃

x,h
R,yz +Q)

α̃x,eR,yzα̃
x,h
R,yz − α̃

y,e
R,xzα̃

y,h
R,xz

|d〉+ |z〉 ,

|ψ3〉 =
−α̃y,eR,xzα̃

y,h
R,xz + α̃x,eR,yzα̃

x,h
R,yz −Q

α̃x,eR,yzα̃
x,h
R,yz + α̃y,eR,xzα̃

y,h
R,xz

|x〉+ |y〉 ,

|ψ4〉 =
−α̃y,eR,xzα̃

y,h
R,xz + α̃x,eR,yzα̃

x,h
R,yz +Q

α̃x,eR,yzα̃
x,h
R,yz + α̃y,eR,xzα̃

y,h
R,xz

|x〉+ |y〉 .

(S27)

In this configuration, in which the Rashba asymmetry direction n contains components

along two nanocrystal symmetry axes, that is, n lies in a mirror plane, the dark exciton is

activated. It is easy to show that the directions of the dipoles of the former bright states

remain orthogonal to each other, despite that their dipole orientations have been changed.

The only non-orthogonal pair of dipoles here correspond to |ψ1〉 and |ψ2〉 , but they both

are polarized along the same z direction.

Going further, we can consider a general orientation of the Rashba asymmetry axis. In

that case, we have not yet found a closed-form solution to the expressions above. Never-

theless, it is clear that, for a general asymmetry direction n , the dark state mixes with

each of the bright states, creating a higher-order coupling between each state via the “dark”

intermediate state. This results in the orthogonality of the dipoles being weakly broken.

Numerical calculations have been performed that confirm this.

The results above can be understood in the context of group theory. If the Rashba asym-

metry direction n is parallel to any one symmetry axis of the orthorhombic nanocrystal,
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the symmetry is reduced to C2v . In that case, the dark state remains dipole inactive and

the three bright states are split into mutually orthogonal, linearly polarized dipoles. But

if the Rashba asymmetry also has a component along either of the other two axes, the

symmetry is reduced further to Cs for which no dark state exists. Finally, for a general

Rashba asymmetry direction, with components along all three nanocrystal symmetry axes,

the symmetry is reduced to C1 for which all exciton states are coupled and as a result all

dipole components are present for every state. These considerations are further discussed in

Section S2.

F. Rashba coefficient in inorganic perovskite nanocrystals

From the results from the previous subsection, Section S1.E, we now estimate the Rashba

coefficients necessary to explain our experimental exciton fine-structure splittings, which are

∼ 1 meV. Specifically, we can exploit Eq. (S25). For simplicity, we assume that all Rashba

coefficients for the electron and hole are equal to each other, αi,eR,jk = αi,hR,jk = α for any i ,

j , and k , and that their effective masses are equal: me = mh = M/2 . The Rashba energy

ER = α2me/2 can then be found as

4ER × (AcR − ArR) ≈ 1 meV. (S28)

This gives ER ≈ 0.92 meV. For comparison, in organic perovskites it was found to be

13 meV [S25]. It is more appropriate, however, to compare the Rashba coefficient αR rather

than the Rashba energy between different materials, because the Rashba coefficient does

not depend on the effective mass. Using me = 0.13 for CsPbBr 3 from Table S1, we

obtain for the traditional definition of the Rashba coefficient αR = α~ = 0.38 eVÅ. For

comparison, the measured value for InSb/InAsSb quantum wells is αR = 0.14 eVÅ [S28];

in InGaAs/InP quantum wells, αR = 0.065 eVÅ [S29], and in InAs quantum wells, αR =

0.22 eVÅ [S30]. In organic–inorganic hybrid perovskites, αR is much larger due to their

ferroelectricity: αR = 7 ± 1 eVÅ in ortho-CH 3 NH 3 PbBr 3 ; while αR = 11 ± 4 eVÅ in

cubic-CH 3 NH 3 PbBr 3 [S31]. The value of αR we estimate from the experimental data is

quite reasonable in comparison with other semiconductors. This leads us to conclude that

the Rashba effect indeed is responsible for the observed exciton fine structure in the CsPbX 3

perovskite nanocrystals.
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G. The role of Fröhlich polarons in metal halide perovskite nanocrystals

It has been proposed that Fröhlich polarons (also known as large polarons) may play a

role in the transport physics of hybrid organic–inorganic lead halide perovskites [S32]. Thus,

one might question what role large polarons might play in the fine structure discussed in this

work. However, large polarons do not contribute significantly to the exciton physics of the

metal halide perovskites examined here. Such polar phonons interact with the total charge

distribution of both the electron and hole. In our metal halide perovskites, the electron and

hole effective masses are almost equal. Consequently, the wavefunctions of the electron and

hole in the exciton are practically identical. Due to the resulting local charge neutrality

within the exciton, the interaction between the exciton and polar phonons is negligible.

S2. SYMMETRY ANALYSIS OF THE EXCITON FINE-STRUCTURE

Here we consider the point-group symmetry and irreducible representations appropriate

for describing the band-edge excitons of quasi-cubic perovskite nanocrystals. Table S3 below

shows how degeneracies and selection rules are modified as we descend in symmetry from

cubic (Oh ) to tetragonal (D4h ) or orthorhombic (D2h ) due to lattice or shape distortions.

Note that in the table, the irreducible representation labels are given for the nanocrystal

point group rather than the bulk space group. For each of these “parent” point groups, we

also show the symmetry breaking effect of a Rashba asymmetry for different orientations

n of the asymmetry axis. The groupings for each parent group (Oh ,D4h , and D2h ) are

separated by double vertical lines in Table S3. Optical selection rules for exciton transitions

are shown in Table S3 by writing the allowed transition-dipole components for each exciton

irreducible representation as x, y, z for linear polarized dipoles or σ± for circular polariza-

tion. In constructing the table, we utilized the irreducible representation labels, and the

character and multiplication tables of KDWS [S3].

The results summarized in the table show that the cubic perovksite band-edge exciton

fine structure consists of a threefold degenerate (triplet) bright state split from a singlet

dark state. As the nanocrystal symmetry is reduced by unit-cell or shape distortions the

bright triplet is expected to split. For the tetragonal phase D4h , the triplet splits into a

singlet linearly polarized along the axis of symmetry and a doublet circularly polarized in the
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plane perpendicular to the symmetry axis. An orthorhombic distortion of D2h symmetry

will split the bright triplet into three non-degenerate states each linearly polarized along the

orthorhombic symmetry axes as follows: Γ−4 (σ+, σ−, z)→ Γ−2 (y) + Γ−3 (z) + Γ−4 (x) .

The addition of a Rashba asymmetry further breaks the symmetry of the nanocrystal

beyond the shape or lattice distortions just discussed. A Rashba asymmetry directed along

the z -axis breaks the symmetry of cubic (Oh ) and tetragonal (D4h ) nanocrystals to C4v ,

characterized by a dark singlet, a bright doublet and a linearly polarized singlet. The effect

of a Rashba asymmetry along the z axis of an orthorhombic nanocrystal takes the symmetry

from D2h to C2v, maintaining the dark state and three linearly polarized, orthogonal bright

excitons. However, if the Rashba asymmetry is directed off the principle axis, the symmetry

reduces to Cs in the case that the asymmetry is oriented within a mirror plane of the

nanocrystal, and to C1 otherwise. In both cases, the dark exciton state is mixed with the

bright excitons. In the case of symmetry Cs, the Rashba asymmetry further mixes two

of the bright excitons; in the lowest symmetry case, all bright excitons are mixed and the

orthogonality of the dipoles is broken, at least in principle. Calculations show, however,

that this mixing is a second-order effect and the resulting non-orthogonality of the dipoles

is expected to be weak.

Note that in Table S3, where relevant, the z-axis is taken as the principle axis unless

otherwise specified as a superscript on the group symbol. The x, y axes are then the axes

associated with other symmetry elements such as C2 rotations where they exist. When

a Rashba asymmetry is oriented along a particular direction that creates a mirror plane,

this mirror plane is given as a superscript on the point-group symbol. For example, Cσxz
s

denotes the Cs point group defined with a mirror plane σxz containing the z and x axes.
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TABLE S3. Descent of symmetry for band-edge excitons in quasi-cubic perovskite nanocrystals:

Point group Oh and its subgroups. Rashba fields are described in the table in terms of an asym-

metry direction n = nxx̂+ nyŷ + nz ẑ as in Section S1.E. See text for explanation.

Oh C4v D4h Cz4v Cx2v Cσxzs D2h C2v Cσxzs C1

(Oh

+nz ẑ)

(D4h

+nz ẑ)

(D4h

+nxx̂)

(C4v

+nxx̂)

(D2h

+nz ẑ)

(Cz2v

+nxx̂)

(Cσxzs

+nyŷ)

Γ−1 (d) Γ2 (d) Γ−1 (d) Γ2 (d) Γ3 (d) Γ2 (y) Γ−1 (d) Γ3(d) Γ2 (y) Γ1 (x,y,z)

Γ1(x) Γ1 (x, z) Γ−4 (x) Γ2 (x) Γ1 (x, z) Γ1 (x,y,z)

Γ−4 (z, σ±) Γ5(σ±) Γ−5 (σ±) Γ5(σ±) Γ2 (y) Γ2 (y) Γ−2 (y) Γ4 (y) Γ2 (y) Γ1 (x,y,z)

Γ1 (z) Γ−2 (z) Γ1 (z) Γ4 (z) Γ1 (z, x) Γ−3 (z) Γ1 (z) Γ1 (z, x) Γ1 (x,y,z)

S3. CALCULATION OF EXCITON AND TRION RADIATIVE LIFETIMES

A. Radiative lifetime of excitons in cube-shaped nanocrystals

The probability of optical excitation of, or recombination from, any exciton state |Ψex〉

is proportional to the square of the matrix element of the operator ep̂ between that state

and the vacuum state, where e is the polarization vector of the emitted or absorbed light,

and p̂ is the momentum operator. In cube-shaped nanocrystals, the calculation of these

matrix elements is complicated by the fact that the electric field of a photon inside the

nanocrystal not only changes its value from outside due to dielectric screening, as in spherical

nanocrystals, but it also becomes inhomogeneous.

As we discussed in Section S1.E, the triplet state in perovskite nanocrystals with or-

thorhombic symmetry is always split into three orthogonal dipoles with the same oscillator

transition strength. Therefore, let us consider the optical transition to the triplet exciton

state with Jz = 0 , which has a linear z dipole. The square of this matrix element can be

written:

|〈0|[ez(r)/Ez
∞] · p̂|Ψex

1,0〉|2 =
2

3
P 2I2‖ , (S29)

where I‖ =
∫
d3rezz(r)v(r, r)/Ez

∞ , and ezz(r) is the z component of the electric field of

the light in the nanocrystal created by a photon with an electric field Ez
∞ , which is linearly

polarized along z and defined at infinite distance from the nanocrystal. The inhomogeneous

distributions of the electric field in the cube-shaped nanocrystals created by the external
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homogeneous electric field is calculated in the next subsection, Section S3.B, for various

ratios of dielectric constants and are shown in Fig. 2e of the main text. Due to the even

parity of the electron and hole envelope functions participating in the band-edge optical

transitions I⊥ =
∫
d3rezx(r)v(r, r)/Ez

∞ =
∫
d3rezy(r)v(r, r)/Ez

∞ = 0 . This analysis shows

that despite the inhomogeneous distribution of the photon electric field in the cube-shaped

nanocrystals, the linearly polarized dipoles of each sublevel of the triplet only emit or absorb

photons having a nonzero electric-field projection on the respective dipole orientation. In

short, the linearly polarized dipoles emit linearly polarized light.

Substituting the matrix elements from Eq. (S29) into the expression for the radiative

decay rate from ref. S33 we find the radiative lifetime of the triplet exciton τex :

1

τex
=

4e2ωn

3~m2
0c

3
|〈0|[e(r)/Ez

∞]p̂|Ψex
1,0〉|2 =

4ωnEp
9 · 137m0c2

I2‖ , (S30)

where ω is the transition (angular) frequency, n is the refractive index of the surrounding

media, m0 is the free-electron mass, c is the speed of light in vacuum, and Ep = 2P 2/m0 is

the Kane energy. The calculated radiative lifetimes in perovskite nanocrystals can be directly

compared with experimental results at low temperature because the experimental data are

not obscured by contributions of a low-energy dark exciton. The largest uncertainty in the

radiative lifetime defined by Eq. (S30) is connected to the uncertainty in the high-frequency

dielectric constant, εin , for the perovskites, which together with εout = n2 determines the

depolarization of the photon electric field in the nanocrystals.

Using Eq. (S30) we have calculated the radiative lifetimes in CsPbX 3 (X=I, Br, and Cl)

nanocrystals and their optical-transition energies. These are plotted in Fig. 2b in the main

text. In these calculations, we used the energy-band parameters and dielectric constants

from Table S1 and a refractive index of n = 1.6 for the surrounding medium, which yields

εout = n2 . Calculations were conducted for the three nanocrystal size regimes: (i) strong

spatial confinement when the nanocrystal size L is smaller than the exciton Bohr radius

aB , (ii) weak spatial confinement when L � aB , and (iii) intermediate confinement when

L ∼ aB . The discussion of these three cases is presented further in Section S3.C.
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B. Calculation of the interior electric field in cube-shaped nanocrystals

We consider the inhomogeneous electric field inside a cube-shaped nanocrystal, modeled

as a dielectric cube. The field is induced by an arbitrarily oriented electric field that is

homogeneous at a large distance from the cube. Such a field can always be decomposed into

three components created independently by the three projections of this remote electric field

along the cube axes. In Fig. 2e in the main text, we show the distribution of the normalized

z component of the electric-field magnitude, Ez
z/E

z
∞ , in the cross-section passing through

the middle of the cube, created by a homogeneous external electric field, Ez
∞ ‖ z , calculated

for several ratios of internal εin to external εout dielectric constants. We describe here the

approach followed to compute it.

The generalized Gauss’s law states that the total electric flux through any closed surface

in space of any shape drawn in an electric field is proportional to the total electric charge

enclosed by the surface. The differential expression of this law, obtained via the divergence

theorem, represents the local conservation of charge in the form of the well known partial

differential equation (PDE)

∇ · (εE) = ρv, (S31)

where ε and ρv represent the electric permittivity (dielectric constant) of the medium and

the electric charge density, respectively. In the context of electrostatics, the electric field is

computed as the negative gradient of the electric potential scalar field φ , which, together

with the charge conservation Eq. (S31), yields

∇ · (ε∇φ) = −ρv, (S32)

which is Poisson’s equation for the electric potential. This PDE is discretized and solved

numerically using the finite element method (FEM). It is applied for a computational domain

that involves a rectangular electrode capacitor configuration where the upper electrode is

set to φ = 1 V and the bottom one is grounded at φ = 0 V .

The proper distance between the capacitor plates in relation to the size of the embedded

dielectric cube was determined by performing successive FEM analyses at various distances

such that the far-field difference among all solutions remained less that 1% for various

values of the dielectric constants. The distribution of both the electric potential and the

electric-field magnitude along the z -axis line that coincides with the intersection of the zx
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and zy planes as it extends between the two electrodes of the capacitor assembly is shown

in Extended Data Fig. 5 for the final selected configuration.

Contour plots of the normalized electric-field magnitude, Ez
z/E

z
∞ , as a function of the

ratio εin/εout are displayed in Extended Data Fig. 6a-d. This figure shows that as the

εin/εout ratio increases (from 4 to 6, 8, and 10, respectively), the overall magnitude of

Ez
z/E

z
∞ decreases. It should also be noted that the perturbations of the contours near the

corners are artifacts of the interpolation resolution utilized by the software employed to

construct them.

A contour plot of the normalized electric-field component Ez
z/E

z
∞ on the xz mid-plane

for εin/εout of 6 is shown in Fig. 2e in the main text. By symmetry this is also valid for

the yz mid-plane. Contours for the normalized electric-field component Ez
x/E

z
∞ for the xz

mid-plane are shown in Extended Data Fig. 6e for the case of εin/εout = 9 . Note that the

Ez
y/E

z
∞ distribution on the yz mid-plane is identical to Extended Data Fig. 6e.

C. The exciton-photon coupling strength in cube-shaped nanocrystals

The coupling strength between the exciton dipole and the inhomogeneous electric field

of a photon in a cube-shaped nanocrystal is controlled by the square of the integral I‖ [see

Eq.(S29)]:

I‖ =

∫
d3rezz(r)v(r, r)/Ez

∞ . (S33)

In the strong-confinement regime, when the exciton Bohr radius aB is larger than the

nanocrystal size L , then v(r, r) = |Φc
gr(r)|2 . The ground-state wavefunctions of electrons

or holes can be written as Φc
gr(x, y, z) = (2/L)3/2 cos(πx/L) cos(πy/L) cos(πz/L) , where

L is the cube edge length. Introducing dimensionless variables x̃ = x/L , ỹ = y/L , and

z̃ = z/L , we can rewrite I‖ in dimensionless form:

Istrong‖ = 8

∫ 0.5

−0.5
dx̃

∫ 0.5

−0.5
dỹ

∫ 0.5

−0.5
dz̃[ezz(x̃, ỹ, z̃)/Ez

∞] cos2(πx̃) cos2(πỹ) cos2(πz̃) . (S34)

This expression was used in Eq. (S30) to calculate the radiative lifetimes of CsPbX 3 (X=I,

Br, and Cl) nanocrystals with L = 6 and 7 nm, L = 5 and 6 nm, and L = 4 and

5 nm, respectively. The energy of the optical transition in this limit is well described by

~ω = Eg + (3~2π2/2µL2)− 3.05e2/εinL , where Eg is the bulk energy gap of the perovskite
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and µ = (1/me + 1/mh)
−1 is the reduced effective mass of the exciton. We used the

energy-band parameters of the perovskites from Table S1.

In the weak-confinement regime, when L� aB , the exciton wavefunction can be written

as a product of the relative motion of the electron and hole φ(re − rh) and the exciton

center-of-mass motion confined in the nanocrystal, Φc
gr(R) , where R = (mere +mhrh)/M

and M = me +mh is the exciton effective mass [S9]: v(re, rh) = φ(re − rh)Φc
gr(R) . In the

weak-confinement regime it is more convenient to directly calculate I2‖ :

(Iweak‖ )2 =
8

π

V

a3B

∣∣∣∣∫ 0.5

−0.5
dx̃

∫ 0.5

−0.5
dỹ

∫ 0.5

−0.5
dz̃
ezz(x̃, ỹ, z̃)

Ez
∞

cos(πx̃) cos(πỹ) cos(πz̃)

∣∣∣∣2 , (S35)

where V = L3 is the volume of the cube-shaped nanocrystal. One can see that under

weak confinement, the ratio V/a3B in I2‖ dramatically shortens the radiative decay times

of the exciton in Eq.(S30) due to its giant oscillator transition strength [S34]. The energy

of the optical transitions in the weak-confinement regime is described as ~ω = Eg − EB +

3~2π2/2ML2 , where EB = e4µ/(2~2ε2in) = ~2/(2µa2B) is the exciton binding energy.

Figure 2b in the main text shows the results of the calculations of the exciton radiative

lifetime in perovskite nanocrystals with L = 17 to 25 nm. One can see that the lifetime

is strongly reduced, becoming shorter than 100 ps in CsPbBr 3 and CsPbCl 3 nanocrystals.

Further, one can see in Fig. 2b that the experimentally measured decay times are in between

the lifetimes predicted for strong (L � aB ) and weak (L � aB ) confinement. This is

because the correlation of the electron and hole motion in nanocrystals, which shortens the

radiative decay time, can already be seen in nanocrystals with intermediate size L ≥ aB .

To demonstrate this, we studied the energy of the confined excitons in nanocrystals with

L ≥ aB using a one-parameter ansatz function:

v(re, rh) = Ce−β|re−rh|Φc
gr(re)Φ

c
gr(rh) , (S36)

where β is a variational parameter and C is a normalization constant determined by the

condition
∫
d3red

3rhv
2(re, rh) = 1 . Using the results of these calculations (see the next

subsection, Section S3.D) we show in Fig. 2b in the main text the exciton radiative lifetimes

of CsPbX 3 nanocrystals (X=I, Br, and Cl) with L = 6 to 16 nm, L = 5 to 16 nm, and

L = 4 to 16 nm, respectively.
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D. Variational calculation for the intermediate-confinement regime

In the variational approach we calculate the expectation value of the two-particle Hamil-

tonian in a cube with edge length L and minimize this with respect to the variational

parameter β . The Hamiltonian is

Ĥ = − ~2

2me

∇2
e −

~2

2mh

∇2
h −

e2

εin|re − rh|
. (S37)

Introducing the dimensionless variables r̃e = re/L , r̃h = rh/L , and the dimensionless

parameter b = βL , the expectation value 〈v|Ĥ|v〉 reduces to the calculation of three

dimensionless integrals. The first integral describes the average kinetic energy:

I1(b) =

∫ 1/2

−1/2
d3r̃1

∫ 1/2

−1/2
d3r̃2 e

−b|r̃1−r2|Φ̃c
gr(r̃1)Φ̃

c
gr(r̃2)∇2

r̃1
e−b|r̃1−r̃2|Φ̃c

gr(r̃1)Φ̃
c
gr(r̃2) , (S38)

where Φ̃c
gr(x̃, ỹ, z̃) = cos(πx̃) cos(πỹ) cos(πz̃) . The second integral describes the average

Coulomb interaction:

I2(b) =

∫ 1/2

−1/2
d3r̃1

∫ 1/2

−1/2
d3r̃2

1

|r̃1 − r̃2|

(
e−b|r̃1−r̃2|Φ̃c

gr(r̃1)Φ̃
c
gr(r̃2)

)2
. (S39)

Finally, the third integral determines the normalization constant C :

I3(b) =

∫ 1/2

−1/2
d3r̃1

∫ 1/2

−1/2
d3r̃2

(
e−b|r̃1−r̃2|Φ̃c

gr(r̃1)Φ̃
c
gr(r̃2)

)2
. (S40)

The normalization constant is connected with this integral as C = L−3/
√
I3(b) .

Using the integrals defined in Eqs. (S38), (S39), and (S40), we can rewrite the expectation

value of the Hamiltonian as,

〈Ψ(b)|H|Ψ(b)〉 = − ~2

meL2

[
1

2

(
1 +

me

mh

)
I1(b)

I3(b)
+
L

ae

I2(b)

I3(b)

]
, (S41)

where ae is the electron Bohr radius: ae = εin~2/(mee
2) . We find the dependence of

all three integrals on b using Monte-Carlo integration and determine the value of b that

minimizes the energy for a range of the ratios L/ae . The results of these calculations are

shown in Extended Data Fig. 8a.

Now we can calculate I‖ , which is defined as

I‖ =

∫
d3r[ezz(r)/E

z
∞]v(r, r) . (S42)
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Using the ansatz function definition in Eq.(S36) and the relation of the normalization con-

stant C with I3(b) , we can directly connect I inter‖ in the intermediate-confinement regime

with the corresponding result in the strong-confinement limit, Istrong‖ , defined in Eq.(S34):

I inter‖ (εin/εout, b) =
1

8
√
I3(b)

Istr‖ (εin/εout) . (S43)

The radiative lifetime is proportional to I2‖ . To describe the dependence of the radiative

lifetime on the nanocrystal size, L , we plot the dependence |I inter‖ /Istrong‖ |2 as a function

L/ae in Extended Data Fig. 8b.

E. Radiative lifetime in spherical nanocrystals

It is interesting to compare the radiative lifetimes obtained for spherical and cube-shaped

nanocrystals. In spherical nanocrystals, the electric field of the photon is homogeneous and

the ratio e(re)/E∞ at each point r of the nanocrystal is equal to the depolarization factor

D = 3εout/(2εout + εin) . Substituting this ratio into Eq. (S30) we find the radiative lifetime

of the triplet exciton τex in spherical nanocrystals:

1

τex
=

4ωnEp
9 · 137m0c2

D2K, (S44)

where K = |
∫
d3rv(r, r)|2 is the overlap integral squared.

The radiative lifetime defined in Eq. (S44) depends strongly on the nanocrystal radius

a via the size dependence of the overlap integral K . In small nanocrystals that are in the

strong-confinement regime ( a < aB ), the photoluminescence is determined by the optical

transitions between the ground quantum confinement levels of the electrons and holes [S9].

In this case, the exciton wavefunction v(r, r) = Φ2
gr(r) is the product of the two identical

wavefunctions Φs
gr(r) =

√
1/2πa sin(πr/a)/r for the electron and hole ground states result-

ing in K = 1 independent of size. The radiative lifetime in Eq.(S44) also weakly depends

on nanocrystal size via the size dependence of the transition frequency, 1/τex ∝ ω .

In the weak-confinement regime, when the nanocrystal radius a � aB , shortening of

the radiative lifetime is expected at low temperatures due to the giant oscillator transition

strength of the exciton localized in the nanocrystal [S34]. As discussed in Section S3.C, the

exciton wavefunction can then be written as a product of the relative motion of the electron

and hole φ(re − rh) and the exciton center-of-mass motion confined in the nanocrystal.
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For spherical nanocrystals, the latter is Φs
gr(R) yielding: v(re, rh) = φ(re − rh)Φs

gr(R) .

Substituting this wavefunction into the overlap integral gives [S9]: K = (8/π2)(a/aB)3 .

The resulting dramatic increase of K is due to the correlation of the electron and hole

motion, increasing the oscillator transition strength and shortening of the radiative lifetime.

This shortening can already be observed in nanocrystals with radius a ≥ aB .

The ratio of the exciton radiative lifetime in spherical and cube-shaped nanocrystals that

have the same volume is equal to I2‖/KD2 . The result of this comparison is shown in the

inset of Fig. 2e in the main text for nanocrystals in the strong- and the weak-confinement

regimes. One can see that the exciton radiative lifetime in spherical nanocrystals is always

shorter than in cube-shaped nanocrystals of the same volume. This is because the electric

field of the photon in spherical nanocrystals is larger than the average field in cube-shaped

nanocrystals.

F. Trion radiative lifetime and polarization

The electron spin is not conserved during optical transitions in perovskite nanocrystals.

As a result the trion optical transition rate is given by summing over the two possible

radiative transitions the trion can undergo. The rate is the same for both positive and

negative trions. Using the notation introduced in the main text, we can write for the

positive trion in the strong-confinement regime:
1

τtrion
=

4e2ωn

3~m2
0c

3

(
|〈Ψe

⇑|[ezz(re)/Ez
∞]p̂z|Ψh

↑〉|2 + |〈Ψe
⇑|exx(re)/Ex

∞]p̂x||Ψh
↓〉|2

+ |〈Ψe
⇑|eyy(re)/Ey

∞]p̂y||Ψh
↓〉|2
)
. (S45)

The three matrix elements in Eq.(S45) describe transitions that are accomplished by emission

of photons with three different orthogonal polarizations. All these matrix elements are

equal to each other, and as a result, the trion photoluminescence is not polarized. This

can be confirmed by symmetry analysis. For nanocrystals of cubic symmetry (point group

Oh ), electrons and holes have symmetry Γ∓6 , respectively, and are two-fold degenerate.

Therefore, a positive/negative trion has symmetry Γ∓6 and is also two-fold degenerate, since

Γ+
6 × Γ−6 × Γ±6 = Γ∓6 . Moreover, optical decay from a trion state to a single-carrier state is

allowed for all polarizations: The x, y, and z components of the dipole operator all transform

as Γ−4 , and Γ∓6 × Γ−4 contains Γ±6 . Furthermore, the matrix elements are equal for the x,

y, and z components by symmetry.
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For nanocrystals with orthorhombic symmetry we arrive at similar conclusions: Electrons

and holes have symmetry Γ∓5 respectively; the positive/negative trion has symmetry Γ∓5

since Γ+
5 × Γ−5 × Γ±5 = Γ∓5 . Again, dipole transitions are allowed for all polarizations since

x, y, and z transform as Γ−4 , Γ−2 , and Γ−3 , respectively, and Γ∓5 × Γ−n = Γ±5 for n =

2, 3, or 4. Given that the initial and final states involved in these transitions are twofold

degenerate, it is also clear by symmetry that the trion emission has no fine structure.

Expressing the matrix elements via I‖ , we obtain for the trion lifetime

1

τtrion
=

2ωnEp
3 · 137m0c2

(
Istr‖
)2
. (S46)

Comparison of this expression with the exciton radiative lifetime in the strong-confinement

regime from Eq. (S30) shows that trion lifetime is shorter: τtrion = (2/3)τex .

In Fig. 2b in the main text we show the experimental decay times measured in perovskite

nanocrystals via single-nanocrystal experiments. The photoluminescence traces shown in

Fig. 2c,d demonstrate A-type blinking [S35], during which the drops in photoluminescence

intensity are correlated with shortening of the decay time. The intermittency of the pho-

toluminescence intensity and the decay time is connected with switching between trion and

exciton emission as a result of nanocrystal charging. As a result Fig. 2 provides direct infor-

mation on the exciton radiative lifetime. The radiative decay time of the trion is 1.5 times

faster than that of the exciton. The ∼ 2.5 -fold drop in photoluminescence intensity sug-

gests however that for these nanocrystals, non-radiative Auger recombination significantly

contributes to the decay, further shortening the trion lifetime.

Another indicator to distinguish between exciton transitions and those from trions is

their polarization dependence. According to Fig. 3a-c, we observe that excitonic transitions

exhibit typical dipolar emission with a high degree of linear polarization. In Extended Data

Fig. 3a we plot the spectrum of a single CsPbBr 2 Cl nanocrystal that exhibits two emission

peaks at 2.5158 and 2.5175 eV and an additional trion-emission peak that is red-shifted by

approximately 16 meV. For measuring the polarization, we analyzed the emitted intensity of

both exciton peaks and the trion peak as function of the linear polarizer angle in front of the

spectrograph, which can be seen in Extended Data Fig. 3b. Both exciton peaks, depicted in

blue and red, show again typical dipolar emission along different axes of polarization, which

are indicated by the blue and red straight lines. The trion peak is essentially unpolarized,

in agreement with theory.
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S4. RELATIVE INTENSITIES OF PHOTOLUMINESCENCE FROM THREE

ORTHOGONAL DIPOLES AND THEIR POLARIZATION PROPERTIES

The relative intensity of the photoluminescence created by three orthogonal emitting

dipoles polarized along the x , y , and z axes and its polarization properties depend on the

observation direction. The probability of emitting light for each of the dipoles is proportional

to ∝ |e ·x|2 , ∝ |e ·y|2 , and ∝ |e ·z|2 , where the polarization unit vector e is perpendicular

to the light-propagation direction. To calculate these dependences we denote the light-

propagation direction by the unit vector u with components given by

ux = sin θ cosφ ,

uy = sin θ sinφ ,

uz = cos θ ,

(S47)

where θ, φ are the standard polar angles. We then form a light polarization unit vector e

in the plane perpendicular to u by

e = (0,−uz, uy)/
√
u2z + u2y . (S48)

Finally, we gradually rotate the vector e around u and calculate the scalar products of

the form ∝ |e · x|2 , ∝ |e · y|2 , ∝ |e · z|2 at each angle. Each one of these scalar products

represents the probability that the corresponding dipole will emit light in the direction u

with linear polarization e .

The rotation of e around u is performed using the following transformation
ex

ey

ez

→


Cs+ u2x(1− Cs) uxuy(1− Cs)− uzSi uxuz(1− Cs) + uySi

uyux(1− Cs) + uzSi Cs+ u2y(1− Cs) uyuz(1− Cs)− uxSi

uzux(1− Cs)− uySi uzuy(1− Cs) + uxSi Cs+ u2z(1− Cs)



ex

ey

ez

 ,

(S49)

where Cs = cosα , Si = sinα , and α is a rotation angle. In fact, our calculations directly

simulate the measurements performed by placing a linear polarizer perpendicular to a certain

direction with respect to the emitting dipoles, and recording the intensity of the transmitted

light as a function of the polarizer angle for each of the dipoles.

To obtain the total photoluminescence intensity emitted in the direction u for each of the

lines, we integrate |e·x|2 , |e·y|2 , and |e·z|2 over all polar angles α . In Extended Data Fig.
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11 we provide several examples of the angular dependence of the emission probability in the

plane perpendicular to the light-propagation direction and the relative photoluminescence

intensity which can be observed from three orthogonal emitting dipoles, for four different

directions. The calculations were conducted for: (i) a high temperature, T , that results

in equal occupation of all three exciton levels (Extended Data Fig. 11a-d) and (ii) a tem-

perature T that provides thermal energy that is comparable to the fine-structure splitting,

kT = ∆1 = ∆2 (Extended Data Fig. 11e-h).

One can see in Extended Data Fig. 11a-d that two dipoles contribute for any observation

direction. The one photoluminescence line can be observed only if the upper exciton sublevels

are unoccupied (compare photoluminescence spectra in panels a and b with the ones in

panels e and f). The relative photoluminescence intensities of two lines whose polarizations

are perpendicular to each other allows us to measure the relative population of the exciton

spin sublevels and therefore the effective temperature (compare panels b and f). One can

also see that at high temperature when all exciton sublevels are populated the detected

photoluminescence intensity of the upper energy line can be larger than that of the lower

energy line (compare panels d and h).

Extended Data Fig. 11 shows photoluminescence intensity peaks and their polarization

calculated for cube-shaped nanocrystals. In perovskite nanostructures with orthorhombic

symmetry the triplet exciton state is always split into three orthogonal dipoles. As a result,

the polarization curves should look very similar to the curves shown in the insets of Extended

Data Fig. 11. The intensity of photoluminescence emitted by each of these dipoles can be

very sensitive to the nanocrystal shape, due to the different screening of the photon electric

field by the different facets of nanocrystals with non-cube shapes. The fluctuation of the

nanocrystal shape could also affect the radiative decay time of the nanocrystals.

Varying the observation directions, we can describe the photoluminescence polarization

curves measured in individual-nanocrystal experiments (compare insets in Fig. 3a-c and

Fig. 3d-f in the main text) and determine the observation direction. To describe these

photoluminescence polarization curves, we assumed a Boltzmann occupation of the exciton

spin sublevels. Using this assumption, we fit the experimental data with a temperature

of 11.5 K for the inset of Fig. 3b in the main text and 20 K for the inset of Fig. 3c.

Potential reasons for the slightly elevated temperatures extracted from the fit (instead of

the targeted 5 K) include: (i) non-perfect thermal contact between the sample holder (where
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the temperature of 5K was measured) and the nanocrystals embedded in the polymer film

and (ii) mild local heating due to the laser illumination. We note, however, that with only

two fitting parameters (temperature and nanocrystal orientation) and our assumption of

cube-shaped nanocrystals, good fits to the experimental data could be obtained.

S5. EMISSION FROM CSPBX 3 VERSUS CDSE NANOCRYSTALS AT ROOM

TEMPERATURE

Because the exciton splittings predicted in this work are on a meV scale, a remaining

question is why CsPbX 3 perovskite nanocrystals emit ∼ 20× faster than other conventional

nanocrystals at room temperature. Under these conditions, one would expect all exciton

sublevels (bright and dark) to be thermally populated. However, the bright triplet still has

significant impact on the photoluminescence behavior at room temperature. For example, we

can compare the exciton fine structure in CsPbX 3 perovskite and CdSe nanocrystals. The

latter is well described in ref. S36. There, the band-edge 1S3/21Se exciton, which consists of

8 electron-hole states, is described. Because 6 of these combine into three doubly degenerate

states, we are left with 5 sublevels labeled by the z -projection of the total exciton angular

momentum, Jz = ±2, ± 1, 0, ± 1, 0 . The lowest sublevel ( Jz = ±2 ) is dark. The next

sublevel (the lower Jz = ±1 ) is within kbT of the ground-state dark exciton, where kb is

the Boltzmann constant and T is temperature. Consequently, this sublevel is significantly

populated at room temperature. However, it is only poorly dipole active. Thus, it is a weak

transition. The next sublevel is completely dark ( Jz = 0 ). Finally, the remaining levels

( Jz = ±1, 0 ) are strongly dipole active. But these lie well above the ground-state dark

exciton in energy. In small CdSe nanocrystals, they are typically split by more than kbT

at room temperature. Moreover, for a complete description we must also include the dark

1P3/21Se exciton, which consists of 8 states. These are sufficiently close in energy to the

1S3/21Se exciton [S37, S38] that they can be thermally populated at room temperature.

When all of the above complications are considered, the result is slower emission. Even

in the high-temperature limit, in which all of these sublevels are equally populated, the

effective radiative lifetime in CdSe is ∼ (16/3)τCdSe0 where τCdSe0 is the radiative lifetime

for the upper bright state.

In contrast, the situation in CsPbX 3 perovskite nanocrystals is quite different. Not only
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does it help that the lowest sublevel is bright rather than dark, but also the lowest three

sublevels belong to the triplet state. Because the triplet state is inherently bright in this

system, each of these sublevels carries the full oscillator transition strength. Furthermore, in

the perovskites the electron and hole masses (see Table S1) are nearly identical. Due to the

smaller hole effective mass in the perovskites in comparison to CdSe, dark excitons derived

from excited hole states are frozen out at room temperature for even large nanocrystals.

For example, for CsPbBr 3 , this occurs for radii below 7 nm. As a result, the band-edge

fine structure in CsPbX 3 perovskite nanocrystals consists of 4 electron-hole pair states, 3 of

which are bright, and only 1 of which is dark. Hence, in the case of equal thermal population,

the effective radiative lifetime in a perovskite nanocrystal is (4/3)τ0 where τ0 is the bright-

state radiative lifetime. This is extremely favorable compared to CdSe nanocrystals, where

only 3 of the 16 thermally occupied electron-hole pair states associated with the band edge

1S3/21Se and 1P3/21Se states are strongly dipole active. Moreover, the 3 bright states in

CdSe lie well above the lowest level in energy.

In addition to the above effects, several other factors contribute to the faster emission

in CsPbX 3 perovskite nanocrystals. For larger particles, like the perovskite nanocrystals

studied here, the phenomenon of giant oscillator transition strength plays a role. We note,

however, that even in small CsPbX 3 perovskite nanocrystals, where this phenomenon would

not contribute, we would still expect an enhancement of the radiative rate for several rea-

sons. First, CsPbX 3 perovskites have a smaller value of the high-frequency dielectric con-

stant in comparison with more conventional nanocrystal systems (∼ 4.5 in CsPbX 3 versus

6.3 in CdSe). This increases the dielectric depolarization factor [see Eq. (S44)]. Second,

the CsPbX 3 perovskites have a larger Kane energy in comparison to more conventional

nanocrystals systems (Ep ∼ 40 eV versus ∼ 17.5 eV in CdSe). As Eq. (5) in the main text

shows, the radiative lifetime is inversely proportional to the Kane energy parameter.
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