20,673 research outputs found

    Maximum Entropy/Optimal Projection (MEOP) control design synthesis: Optimal quantification of the major design tradeoffs

    Get PDF
    The underlying philosophy and motivation of the optimal projection/maximum entropy (OP/ME) stochastic modeling and reduced control design methodology for high order systems with parameter uncertainties are discussed. The OP/ME design equations for reduced-order dynamic compensation including the effect of parameter uncertainties are reviewed. The application of the methodology to several Large Space Structures (LSS) problems of representative complexity is illustrated

    Reconstructing the direction of reactor antineutrinos via electron scattering in Gd-doped water Cherenkov detectors

    Full text link
    The potential of elastic antineutrino-electron scattering in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13-km standoff from a 3.758-GWt light water nuclear reactor and the detector response was modeled using a Geant4-based simulation package. Background was estimated via independent simulations and by scaling published measurements from similar detectors. Background contributions were estimated for solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclides, water-borne radon, and gamma rays from the photomultiplier tubes (PMTs), detector walls, and surrounding rock. We show that with the use of low background PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. Directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. The results provide a list of experimental conditions that, if satisfied in practice, would enable antineutrino directional reconstruction at 3σ\sigma significance in large Gd-doped water Cherenkov detectors with greater than 10-km standoff from a nuclear reactor.Comment: 11 pages, 9 figure

    Analytic Methods for Optimizing Realtime Crowdsourcing

    Get PDF
    Realtime crowdsourcing research has demonstrated that it is possible to recruit paid crowds within seconds by managing a small, fast-reacting worker pool. Realtime crowds enable crowd-powered systems that respond at interactive speeds: for example, cameras, robots and instant opinion polls. So far, these techniques have mainly been proof-of-concept prototypes: research has not yet attempted to understand how they might work at large scale or optimize their cost/performance trade-offs. In this paper, we use queueing theory to analyze the retainer model for realtime crowdsourcing, in particular its expected wait time and cost to requesters. We provide an algorithm that allows requesters to minimize their cost subject to performance requirements. We then propose and analyze three techniques to improve performance: push notifications, shared retainer pools, and precruitment, which involves recalling retainer workers before a task actually arrives. An experimental validation finds that precruited workers begin a task 500 milliseconds after it is posted, delivering results below the one-second cognitive threshold for an end-user to stay in flow.Comment: Presented at Collective Intelligence conference, 201

    Trions in a periodic potential

    Full text link
    The group-theoretical classification of trion states is presented. It is based on considerations of products of irreducible representations of the 2D translation group. For a given BvK period N degeneracy of obtained states is N^2. Trions consist of two identical particles so the symmetrization of states with respect to particles transposition is considered. Completely antisymmetric states can be constructed by introducing antisymmetric spin functions. Two symmetry adapted bases are considered. The third possibility is postponed for the further investigations.Comment: revtex, 5 p., sub. to Physica

    Senior-Løken syndrome: a syndromic form of retinal dystrophy associated with nephronophthisis

    Get PDF
    pre-printSenior-Løken syndrome (SLS) is an autosomal recessive disease characterized by development of a retinitis (RP)- or Leber congenital amaurosis (LCA)-like retinal dystrophy and a medullary cystic kidney disease, nephronophthisis. Mutations in several genes (called nephrocystins) have been shown to cause SLS. The proteins encoded by these genes are localized in the connecting cilium of photoreceptor cells and in the primary cilium of kidney cells. Nephrocystins are thought to have a role in regulating transport of proteins bound to the outer segment/primary cilium; however, the precise molecular mechanisms are largely undetermined. This review will survey the biochemistry, cell biology and existing animal models for each of the nephrocystins to understand the photoreceptor biology and the pathogenesis of retinal degeneration

    Integrated control-system design via generalized LQG (GLQG) theory

    Get PDF
    Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations

    Dynamic autonomous intelligent control of an asteroid lander

    Get PDF
    One of the future flagship missions of the European Space Agency (ESA) is the asteroid sample return mission Marco-Polo. Although there have been a number of past missions to asteroids, a sample has never been successfully returned. The return of asteroid regolith to the Earth's surface introduces new technical challenges. This paper develops attitude control algorithms for the descent phase onto an asteroid in micro-gravity conditions and draws a comparison between the algorithms considered. Two studies are also performed regarding the Fault Detection Isolation and Recovery (FDIR) of the control laws considered. The potential of using Direct Adaptive Control (DAC) as a controller for the surface sampling process is also investigated. Use of a DAC controller incorporates increased levels of robustness by allowing realtime variation of control gains. This leads to better response to uncertainties encountered during missions

    Applications of BGP-reflection functors: isomorphisms of cluster algebras

    Full text link
    Given a symmetrizable generalized Cartan matrix AA, for any index kk, one can define an automorphism associated with A,A, of the field Q(u1,>...,un)\mathbf{Q}(u_1, >..., u_n) of rational functions of nn independent indeterminates u1,...,un.u_1,..., u_n. It is an isomorphism between two cluster algebras associated to the matrix AA (see section 4 for precise meaning). When AA is of finite type, these isomorphisms behave nicely, they are compatible with the BGP-reflection functors of cluster categories defined in [Z1, Z2] if we identify the indecomposable objects in the categories with cluster variables of the corresponding cluster algebras, and they are also compatible with the "truncated simple reflections" defined in [FZ2, FZ3]. Using the construction of preprojective or preinjective modules of hereditary algebras by Dlab-Ringel [DR] and the Coxeter automorphisms (i.e., a product of these isomorphisms), we construct infinitely many cluster variables for cluster algebras of infinite type and all cluster variables for finite types.Comment: revised versio
    • …
    corecore