16,840 research outputs found
A 100 micro Kelvin bolometer system for SIRTF
Progress toward a prototype of 100 mK bolometric detection system for the Space Infrared Telescope Facility (SIRTF) is described. Two adiabatic demagnetization refrigerators (ADR's) were constructed and used to investigate the capabilities necessary for orbital operation. The first, a laboratory ADR, demonstrated a hold time at 0.1 K of over 12 hours, with temperature stability approx. 3 micro-K RMS achieved by controlling the magnetic field. A durable salt pill and an efficient support system have been demonstrated. A second ADR, the SIRTF flight prototype, has been built and will be flown on a balloon. Techniques for magnetic shielding, low heat leak current leads, and a mechanical heat switch are being developed in this ADR. Plans for construction of 100 mK bolometers are discussed. Three important cosmological investigations which will be carried out by these longest wavelength SIRTF detectors are described
Analytical and experimental investigation of a 1/8-scale dynamic model of the shuttle orbiter. Volume 3A: Supporting data
For abstract, see N75-15681
Analytical and experimental investigation of a 1/8-scale dynamic model of the shuttle orbiter. Volume 1: Summary report
A 1/8-scale structural dynamics model of the space shuttle orbiter was analyzed using the NASA Structural Analysis System (NASTRAN). Comparison of the calculated eigenvalues with preliminary test data for the unrestrained condition indicate that the analytical model was consistently stiffer, being about 20% higher in the first mode. The eigenvectors show reasonably good agreement with test data. A series of analytical and experimental investigations undertaken to resolve the discrepancy are described. Modifications in the NASTRAN model based upon these investigations resulted in close agreement for both eigenvalues and eigenvectors
On Combining Lensing Shear Information from Multiple Filters
We consider the possible gain in the measurement of lensing shear from
imaging data in multiple filters. Galaxy shapes may differ significantly across
filters, so that the same galaxy offers multiple samples of the shear. On the
other extreme, if galaxy shapes are identical in different filters, one can
combine them to improve the signal-to-noise and thus increase the effective
number density of faint, high redshift galaxies. We use the GOODS dataset to
test these scenarios by calculating the covariance matrix of galaxy
ellipticities in four visual filters (B,V,i,z). We find that galaxy shapes are
highly correlated, and estimate the gain in galaxy number density by combining
their shapes.Comment: 8 pages, no figures, submitted to JCA
Weak Lensing Determination of the Mass in Galaxy Halos
We detect the weak gravitational lensing distortion of 450,000 background
galaxies (20<R<23) by 790 foreground galaxies (R<18) selected from the Las
Campanas Redshift Survey (LCRS). This is the first detection of weak lensing by
field galaxies of known redshift, and as such permits us to reconstruct the
shear profile of the typical field galaxy halo in absolute physical units
(modulo H_0), and to investigate the dependence of halo mass upon galaxy
luminosity. This is also the first galaxy-galaxy lensing study for which the
calibration errors are negligible. Within a projected radius of 200 \hkpc, the
shear profile is consistent with an isothermal profile with circular velocity
164+-20 km/s for an L* galaxy, consistent with typical disk rotation at this
luminosity. This halo mass normalization, combined with the halo profile
derived by Fischer et al (2000) from lensing analysis SDSS data, places a lower
limit of (2.7+-0.6) x 10^{12}h^{-1} solar masses on the mass of an L* galaxy
halo, in good agreement with satellite galaxy studies. Given the known
luminosity function of LCRS galaxies, and the assumption that for galaxies, we determine that the mass within 260\hkpc of normal
galaxies contributes to the density of the Universe (for
) or for . These lensing data suggest
that (95% CL), only marginally in agreement with the usual
Faber-Jackson or Tully-Fisher scaling. This is the most
complete direct inventory of the matter content of the Universe to date.Comment: 18 pages, incl. 3 figures. Submitted to ApJ 6/7/00, still no response
from the referee after four months
PATEX: Exploring Pattern Variations
Patterns play a central role in 2D graphic design. A critical step in the design of patterns is evaluating multiple design alternatives. Exploring these alternatives with existing tools is challenging because most tools force users to work with a single fixed representation of the pattern that encodes a specific set of geometric relationships between pattern elements. However, for most patterns, there are many different interpretations of its regularity that correspond to different design variations. The exponential nature of this variation space makes the problem of finding all variations intractable. We present a method called PATEX to characterize and efficiently identify distinct and valid pattern variations, allowing users to directly navigate the variation space. Technically, we propose a novel linear approximation to handle the complexity of the problem and efficiently enumerate suitable pattern variations under proposed element movements. We also present two pattern editing interfaces that expose the detected pattern variations as suggested edits to the user. We show a diverse collection of pattern edits and variations created with PATEX. The results from our user study indicate that our suggested variations can be useful and inspirational for typical pattern editing tasks
Screening magnetic fields by a superconducting disk: a simple model
We introduce a simple approach to evaluate the magnetic field distribution
around superconducting samples, based on the London equations; the elementary
variable is the vector potential. This procedure has no adjustable parameters,
only the sample geometry and the London length, , determine the
solution. The calculated field reproduces quantitatively the measured induction
field above MgB disks of different diameters, at 20K and for applied fields
lower than 0.4T. The model can be applied if the flux line penetration inside
the sample can be neglected when calculating the induction field distribution
outside the superconductor. Finally we show on a cup-shape geometry how one can
design a magnetic shield satisfying a specific constraint
The Evolution of Distorted Rotating Black Holes III: Initial Data
In this paper we study a new family of black hole initial data sets
corresponding to distorted ``Kerr'' black holes with moderate rotation
parameters, and distorted Schwarzschild black holes with even- and odd-parity
radiation. These data sets build on the earlier rotating black holes of Bowen
and York and the distorted Brill wave plus black hole data sets. We describe
the construction of this large family of rotating black holes. We present a
systematic study of important properties of these data sets, such as the size
and shape of their apparent horizons, and the maximum amount of radiation that
can leave the system during evolution. These data sets should be a very useful
starting point for studying the evolution of highly dynamical black holes and
can easily be extended to 3D.Comment: 16 page
Ray helicity: a geometric invariant for multi-dimensional resonant wave conversion
For a multicomponent wave field propagating into a multidimensional
conversion region, the rays are shown to be helical, in general. For a
ray-based quantity to have a fundamental physical meaning it must be invariant
under two groups of transformations: congruence transformations (which shuffle
components of the multi-component wave field) and canonical transformations
(which act on the ray phase space). It is shown that for conversion between two
waves there is a new invariant not previously discussed: the intrinsic helicity
of the ray
- …