393 research outputs found

    Breakdown of Onsager symmetry in neoclassical transport theory

    Get PDF

    Breakdown of Onsager symmetry in neoclassical transport theory

    Get PDF

    Quantum Weakly Nondeterministic Communication Complexity

    Full text link
    We study the weakest model of quantum nondeterminism in which a classical proof has to be checked with probability one by a quantum protocol. We show the first separation between classical nondeterministic communication complexity and this model of quantum nondeterministic communication complexity for a total function. This separation is quadratic.Comment: 12 pages. v3: minor correction

    A faster pseudo-primality test

    Get PDF
    We propose a pseudo-primality test using cyclic extensions of Z/nZ\mathbb Z/n \mathbb Z. For every positive integer klognk \leq \log n, this test achieves the security of kk Miller-Rabin tests at the cost of k1/2+o(1)k^{1/2+o(1)} Miller-Rabin tests.Comment: Published in Rendiconti del Circolo Matematico di Palermo Journal, Springe

    A BQP-complete problem related to the Ising model partition function via a new connection between quantum circuits and graphs

    Full text link
    We present a simple construction that maps quantum circuits to graphs and vice-versa. Inspired by the results of D.A. Lidar linking the Ising partition function with quadratically signed weight enumerators (QWGTs), we also present a BQP-complete problem for the additive approximation of a function over hypergraphs related to the generating function of Eulerian subgraphs for ordinary graphs. We discuss connections with the Ising partition function.Comment: 12 pages, 2 figure

    Entropy and Quantum Kolmogorov Complexity: A Quantum Brudno's Theorem

    Full text link
    In classical information theory, entropy rate and Kolmogorov complexity per symbol are related by a theorem of Brudno. In this paper, we prove a quantum version of this theorem, connecting the von Neumann entropy rate and two notions of quantum Kolmogorov complexity, both based on the shortest qubit descriptions of qubit strings that, run by a universal quantum Turing machine, reproduce them as outputs.Comment: 26 pages, no figures. Reference to publication added: published in the Communications in Mathematical Physics (http://www.springerlink.com/content/1432-0916/

    Tunneling of quantum rotobreathers

    Full text link
    We analyze the quantum properties of a system consisting of two nonlinearly coupled pendula. This non-integrable system exhibits two different symmetries: a permutational symmetry (permutation of the pendula) and another one related to the reversal of the total momentum of the system. Each of these symmetries is responsible for the existence of two kinds of quasi-degenerated states. At sufficiently high energy, pairs of symmetry-related states glue together to form quadruplets. We show that, starting from the anti-continuous limit, particular quadruplets allow us to construct quantum states whose properties are very similar to those of classical rotobreathers. By diagonalizing numerically the quantum Hamiltonian, we investigate their properties and show that such states are able to store the main part of the total energy on one of the pendula. Contrary to the classical situation, the coupling between pendula necessarily introduces a periodic exchange of energy between them with a frequency which is proportional to the energy splitting between quasi-degenerated states related to the permutation symmetry. This splitting may remain very small as the coupling strength increases and is a decreasing function of the pair energy. The energy may be therefore stored in one pendulum during a time period very long as compared to the inverse of the internal rotobreather frequency.Comment: 20 pages, 11 figures, REVTeX4 styl

    Effective Lagrangian Approach to the Theory of Eta Photoproduction in the N(1535)N^{*}(1535) Region

    Full text link
    We investigate eta photoproduction in the N(1535)N^{*}(1535) resonance region within the effective Lagrangian approach (ELA), wherein leading contributions to the amplitude at the tree level are taken into account. These include the nucleon Born terms and the leading tt-channel vector meson exchanges as the non-resonant pieces. In addition, we consider five resonance contributions in the ss- and uu- channel; besides the dominant N(1535)N^{*}(1535), these are: N(1440),N(1520),N(1650)N^{*}(1440),N^{*}(1520),N^{*}(1650) and N(1710)N^{*}(1710). The amplitudes for the π\pi^\circ and the η\eta photoproduction near threshold have significant differences, even as they share common contributions, such as those of the nucleon Born terms. Among these differences, the contribution to the η\eta photoproduction of the ss-channel excitation of the N(1535)N^{*}(1535) is the most significant. We find the off-shell properties of the spin-3/2 resonances to be important in determining the background contributions. Fitting our effective amplitude to the available data base allows us to extract the quantity χΓηA1/2/ΓT\sqrt{\chi \Gamma_\eta} A_{1/2}/\Gamma_T, characteristic of the photoexcitation of the N(1535)N^{*}(1535) resonance and its decay into the η\eta-nucleon channel, of interest to precise tests of hadron models. At the photon point, we determine it to be (2.2±0.2)×101GeV1(2.2\pm 0.2)\times 10^{-1} GeV^{-1} from the old data base, and (2.2±0.1)×101GeV1(2.2\pm 0.1) \times 10^{-1} GeV^{-1} from a combination of old data base and new Bates data. We obtain the helicity amplitude for N(1535)γpN^{*}(1535)\rightarrow \gamma p to be A1/2=(97±7)×103GeV1/2A_{1/2}=(97\pm 7)\times 10^{-3} GeV^{-1/2} from the old data base, and A1/2=(97±6)×103GeV1/2A_{1/2}=(97\pm 6)\times 10^{-3} GeV^{-1/2} from the combination of the old data base and new Bates data, compared with the results of the analysis of pion photoproduction yielding 74±1174\pm 11, in the same units.Comment: 43 pages, RevTeX, 9 figures available upon request, to appear in Phys. Rev.
    corecore