21,223 research outputs found

    Globular Cluster Abundances from High-Resolution, Integrated-Light Spectroscopy. II. Expanding the Metallicity Range for Old Clusters and Updated Analysis Techniques

    Full text link
    We present abundances of globular clusters in the Milky Way and Fornax from integrated light spectra. Our goal is to evaluate the consistency of the integrated light analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of 7 clusters from our previous publications and results for 5 new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from integrated light spectra agrees to ∼\sim0.1 dex for globular clusters with metallicities as high as [Fe/H]=−0.3-0.3, but the abundances measured for more metal rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na I, Mg I, Al I, Si I, Ca I, Ti I, Ti II, Sc II, V I, Cr I, Mn I, Co I, Ni I, Cu I, Y II, Zr I, Ba II, La II, Nd II, and Eu II. The elements for which the integrated light analysis gives results that are most similar to analysis of individual stellar spectra are Fe I, Ca I, Si I, Ni I, and Ba II. The elements that show the greatest differences include Mg I and Zr I. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the integrated light results for other important elements.Comment: Accepted for publication in ApJ, 37 pages, 13 tables, 29 figure

    The Detailed Chemical Abundance Patterns of M31 Globular Clusters

    Full text link
    We present detailed chemical abundances for >>20 elements in ∼\sim30 globular clusters in M31. These results have been obtained using high resolution (λ/Δλ∼\lambda/\Delta\lambda\sim24,000) spectra of their integrated light and analyzed using our original method. The globular clusters have galactocentric radii between 2.5 kpc and 117 kpc, and therefore provide abundance patterns for different phases of galaxy formation recorded in the inner and outer halo of M31. We find that the clusters in our survey have a range in metallicity of −2.2<-2.2<[Fe/H]<−0.11<-0.11. The inner halo clusters cover this full range, while the outer halo globular clusters at R>>20 kpc have a small range in abundance of [Fe/H]=−1.6±0.10=-1.6 \pm 0.10. We also measure abundances of alpha, r- and s-process elements. These results constitute the first abundance pattern constraints for old populations in M31 that are comparable to those known for the Milky Way halo.Comment: XII International Symposium on Nuclei in the Cosmos August 5-12, 2012 Cairns, Australia. To appear in Proceedings of Scienc

    Fast quantum algorithm for numerical gradient estimation

    Full text link
    Given a blackbox for f, a smooth real scalar function of d real variables, one wants to estimate the gradient of f at a given point with n bits of precision. On a classical computer this requires a minimum of d+1 blackbox queries, whereas on a quantum computer it requires only one query regardless of d. The number of bits of precision to which f must be evaluated matches the classical requirement in the limit of large n.Comment: additional references and minor clarifications and corrections to version

    Constraints to Energy Spectra of Blazars based on Recent EBL Limits from Galaxy Counts

    Full text link
    We combine the recent estimate of the contribution of galaxies to the 3.6 micron intensity of the extragalactic background light (EBL) with optical and near-infrared (IR) galaxy counts to set new limits on intrinsic spectra of some of the most distant TeV blazars 1ES 0229+200, 1ES 1218+30.4, and 1ES 1101-232, located at redshifts 0.1396, 0.182, and 0.186, respectively. The new lower limit on the 3.6 micron EBL intensity is significantly higher than the previous one set by the cumulative emission from resolved Spitzer galaxies. Correcting for attenuation by the revised EBL, we show that the differential spectral index of the intrinsic spectrum of the three blazars is 1.28 +- 0.20 or harder. These results present blazar emission models with the challenge of producing extremely hard intrinsic spectra in the sub-TeV to multi-TeV regime. These results also question the reliability of recently derived upper limits on the near-IR EBL intensity that are solely based on the assumption that intrinsic blazar spectra should not be harder than 1.5.Comment: 13 pages, 2 figures, submitted to the Astrophysical Journa
    • …
    corecore