432 research outputs found

    Scalable Fluidic Injector Arrays for Viral Targeting of Intact 3-D Brain Circuits

    Get PDF
    Our understanding of neural circuits--how they mediate the computations that subserve sensation, thought, emotion, and action, and how they are corrupted in neurological and psychiatric disorders--would be greatly facilitated by a technology for rapidly targeting genes to complex 3-dimensional neural circuits, enabling fast creation of "circuit-level transgenics." We have recently developed methods in which viruses encoding for light-sensitive proteins can sensitize specific cell types to millisecond-timescale activation and silencing in the intact brain. We here present the design and implementation of an injector array capable of delivering viruses (or other fluids) to dozens of defined points within the 3-dimensional structure of the brain (Figure. 1A, 1B). The injector array comprises one or more displacement pumps that each drive a set of syringes, each of which feeds into a polyimide/fused-silica capillary via a high-pressure-tolerant connector. The capillaries are sized, and then inserted into, desired locations specified by custom-milling a stereotactic positioning board, thus allowing viruses or other reagents to be delivered to the desired set of brain regions. To use the device, the surgeon first fills the fluidic subsystem entirely with oil, backfills the capillaries with the virus, inserts the device into the brain, and infuses reagents slowly (<0.1 microliters/min). The parallel nature of the injector array facilitates rapid, accurate, and robust labeling of entire neural circuits with viral payloads such as optical sensitizers to enable light-activation and silencing of defined brain circuits. Along with other technologies, such as optical fiber arrays for light delivery to desired sets of brain regions, we hope to create a toolbox that enables the systematic probing of causal neural functions in the intact brain. This technology may not only open up such systematic approaches to circuit-focused neuroscience in mammals, and facilitate labeling of brain regions in large animals such as non-human primates, but may also open up a clinical translational path for cell-specific optical control prosthetics, whose precision may enable improved treatment of intractable brain disorders. Finally, such devices as described here may facilitate precisely-timed fluidic delivery of other payloads, such as stem cells and pharmacological agents, to 3-dimensional structures, in an easily user-customizable fashion.National Institutes of Health (U.S.) (NIH Director's New Innovator Award (DP2 OD002002-01)National Institutes of Health (U.S.) (NIH Challenge Grant 1RC1MH088182-01)National Institutes of Health (U.S.) (NIH Grand Opportunities Grant 1RC2DE020919-01)National Institutes of Health (U.S.) (NIH Grand Opportunities Grant NIH 1R01NS067199-01)National Science Foundation (U.S.) (NSF 0848804)National Science Foundation (U.S.) (NSF 0835878)McGovern Institute for Brain Research at MIT (Neurotechnology Award Program)National Alliance for Research on Schizophrenia and Depression (U.S.)Alfred P. Sloan FoundationDr. Gerald Burnett and Marjorie BurnettUnited States. Dept. of DefenseSociety for Neuroscience (SFN Research Award for Innovation in Neuroscience)Massachusetts Institute of Technology. Media LaboratoryBenesse FoundationWallace H. Coulter Foundatio

    Close-Packed Silicon Microelectrodes for Scalable Spatially Oversampled Neural Recording

    Get PDF
    Objective: Neural recording electrodes are important tools for understanding neural codes and brain dynamics. Neural electrodes that are closely packed, such as in tetrodes, enable spatial oversampling of neural activity, which facilitates data analysis. Here we present the design and implementation of close-packed silicon microelectrodes to enable spatially oversampled recording of neural activity in a scalable fashion. Methods: Our probes are fabricated in a hybrid lithography process, resulting in a dense array of recording sites connected to submicron dimension wiring. Results: We demonstrate an implementation of a probe comprising 1000 electrode pads, each 9 × 9 μm, at a pitch of 11 μm. We introduce design automation and packaging methods that allow us to readily create a large variety of different designs. Significance: We perform neural recordings with such probes in the live mammalian brain that illustrate the spatial oversampling potential of closely packed electrode sites.Massachusetts Institute of Technology. Simons Center for the Social BrainNational Institutes of Health (U.S.) (NIH Director’s Pioneer Award DP1NS087724)National Institutes of Health (U.S.) (NIH Grant R01NS067199)National Institutes of Health (U.S.) (NIH grant Grant 2R44NS070453- 03A1)National Institutes of Health (U.S.) (NIH Grant R01DA029639)National Science Foundation (U.S.) (Cognitive Rhythms Collaborative, NSF DMS 1042134)Institution of Engineering and Technology (IET) (Harvey Prize)New York Stem Cell FoundationNational Institutes of Health (U.S.) (NIH grant CBET 1053233)United States. Defense Advanced Research Projects Agency (DARPA Grant HR0011-14-2-0004)Paul G. Allen Family Foundatio

    Simple Precision Creation of Digitally Specified, Spatially Heterogeneous, Engineered Tissue Architectures

    Get PDF
    Complex architectures of integrated circuits are achieved through multiple layer photolithography, which has empowered the semiconductor industry. We adapt this philosophy for tissue engineering with a versatile, scalable, and generalizable microfabrication approach to create engineered tissue architectures composed of digitally specifiable building blocks, each with tuned structural, cellular, and compositional features.Paul G. Allen Family FoundationNew York Stem Cell FoundationNational Institutes of Health (U.S.)National Science Foundation (U.S.)Lincoln LaboratoryInstitution of Engineering and Technology (AF Harvey Prize

    A wirelessly powered and controlled device for optical neural control of freely-behaving animals

    Get PDF
    Optogenetics, the ability to use light to activate and silence specific neuron types within neural networks in vivo and in vitro, is revolutionizing neuroscientists' capacity to understand how defined neural circuit elements contribute to normal and pathological brain functions. Typically, awake behaving experiments are conducted by inserting an optical fiber into the brain, tethered to a remote laser, or by utilizing an implanted light-emitting diode (LED), tethered to a remote power source. A fully wireless system would enable chronic or longitudinal experiments where long duration tethering is impractical, and would also support high-throughput experimentation. However, the high power requirements of light sources (LEDs, lasers), especially in the context of the extended illumination periods often desired in experiments, precludes battery-powered approaches from being widely applicable. We have developed a headborne device weighing 2 g capable of wirelessly receiving power using a resonant RF power link and storing the energy in an adaptive supercapacitor circuit, which can algorithmically control one or more headborne LEDs via a microcontroller. The device can deliver approximately 2 W of power to the LEDs in steady state, and 4.3 W in bursts. We also present an optional radio transceiver module (1 g) which, when added to the base headborne device, enables real-time updating of light delivery protocols; dozens of devices can be controlled simultaneously from one computer. We demonstrate use of the technology to wirelessly drive cortical control of movement in mice. These devices may serve as prototypes for clinical ultra-precise neural prosthetics that use light as the modality of biological control.National Institutes of Health (U.S.) (NIH Director’s New Innovator Award (DP2OD002002))National Institutes of Health (U.S.) (Grant 1R01DA029639)National Institutes of Health (U.S.) (Grant 1RC1MH088182)National Institutes of Health (U.S.) (Grant 1RC2DE020919)National Institutes of Health (U.S.) (Grant 1R01NS067199)National Institutes of Health (U.S.) (Grant 1R43NS070453)National Science Foundation (U.S.) (CAREER award)National Science Foundation (U.S.) (NSF Grant DMS 1042134)National Science Foundation (U.S.) (NSF Grant DMS 0848804)National Science Foundation (U.S.) (NSF Grant EFRI 0835878)Benesse FoundationGoogle (Firm)Dr. Gerald Burnett and Marjorie BurnettUnited States. Dept. of Defense (CDMRP PTSD Program)Massachusetts Institute of TechnologyBrain & Behavior Research FoundationAlfred P. Sloan FoundationSociety for NeuroscienceMassachusetts Institute of Technology. Media LaboratoryMcGovern Institute for Brain Research at MITWallace H. Coulter Foundatio

    The association between impulsivity and alcohol/drug use among prison inmates

    Get PDF
    Background: Few studies have examined the relation between impulsivity and drug involvement with prison inmates, in spite of their heavy drug use. Among this small body of work, most studies look at clinically relevant drug dependence, rather than drug use specifically. Method: N = 242 adult inmates (34.8% female, 52% White) with an average age of 35.58 (SD = 9.19) completed a modified version of the 15-item Barratt Impulsiveness Scale (BIS) and measures assessing lifetime alcohol, opiate, benzodiazepine, cocaine, cannabis, hallucinogen, and polysubstance use. Lifetime users also reported the frequency of use for the 30 days prior to incarceration. Results: Impulsivity was higher among lifetime users (versus never users) of all substances other than cannabis. Thirty day drug use frequency was only related to impulsivity for opiates and alcohol. Discussion: This study extends prior work, by showing that a lifetime history of non-clinical substance use is positively associated with impulsivity among prison inmates. Implications for drug interventions are considered for this population, which is characterized by high rates of substance use and elevated impulsivity

    A direct-to-drive neural data acquisition system

    Get PDF
    Driven by the increasing channel count of neural probes, there is much effort being directed to creating increasingly scalable electrophysiology data acquisition (DAQ) systems. However, all such systems still rely on personal computers for data storage, and thus are limited by the bandwidth and cost of the computers, especially as the scale of recording increases. Here we present a novel architecture in which a digital processor receives data from an analog-to-digital converter, and writes that data directly to hard drives, without the need for a personal computer to serve as an intermediary in the DAQ process. This minimalist architecture may support exceptionally high data throughput, without incurring costs to support unnecessary hardware and overhead associated with personal computers, thus facilitating scaling of electrophysiological recording in the future.National Institutes of Health (U.S.) (Grant 1DP1NS087724)National Institutes of Health (U.S.) (Grant 1R01DA029639)National Institutes of Health (U.S.) (Grant 1R01NS067199)National Institutes of Health (U.S.) (Grant 2R44NS070453)National Institutes of Health (U.S.) (Grant R43MH101943)New York Stem Cell FoundationPaul Allen FoundationMassachusetts Institute of Technology. Media LaboratoryGoogle (Firm)United States. Defense Advanced Research Projects Agency (HR0011-14-2-0004)Hertz Foundation (Myhrvold Family Fellowship

    Antigenic Complementarity in the Origins of Autoimmunity: A General Theory Illustrated With a Case Study of Idiopathic Thrombocytopenia Purpura

    Get PDF
    We describe a novel, testable theory of autoimmunity, outline novel predictions made by the theory, and illustrate its application to unravelling the possible causes of idiopathic thrombocytopenia purpura (ITP). Pairs of stereochemically complementary antigens induce complementary immune responses (antibody or T-cell) that create loss of regulation and civil war within the immune system itself. Antibodies attack antibodies creating circulating immune complexes; T-cells attack T-cells creating perivascular cuffing. This immunological civil war abrogates the self-nonself distinction. If at least one of the complementary antigens mimics a self antigen, then this unregulated immune response will target host tissues as well. Data demonstrating that complementary antigens are found in some animal models of autoimmunity and may be present in various human diseases, especially ITP, are reviewed. Specific mechanisms for preventing autoimmunity or suppressing existing autoimmunity are derived from the theory, and critical tests proposed. Finally, we argue that Koch's postulates are inadequate for establishing disease causation for multiple-antigen diseases and discuss the possibility that current research has failed to elucidate the causes of human autoimmune diseases because we are using the wrong criteria

    Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain

    Get PDF
    To understand how brain states and behaviors are generated by neural circuits, it would be useful to be able to perturb precisely the activity of specific cell types and pathways in the nonhuman primate nervous system. We used lentivirus to target the light-activated cation channel channelrhodopsin-2 (ChR2) specifically to excitatory neurons of the macaque frontal cortex. Using a laser-coupled optical fiber in conjunction with a recording microelectrode, we showed that activation of excitatory neurons resulted in well-timed excitatory and suppressive influences on neocortical neural networks. ChR2 was safely expressed, and could mediate optical neuromodulation, in primate neocortex over many months. These findings highlight a methodology for investigating the causal role of specific cell types in nonhuman primate neural computation, cognition, and behavior, and open up the possibility of a new generation of ultraprecise neurological and psychiatric therapeutics via cell-type-specific optical neural control prosthetics.Helen Hay Whitney Foundation (Fellowship)National Institutes of Health (U.S.) (NIH-EY002621-31)McGovern Institute for Brain Research at MIT (Neurotechnology Award)National Institutes of Health (U.S.) (Grant NIH-EY12848)National Institutes of Health (U.S.) (Grant NIH-EY017292)National Institutes of Health (U.S.) (NIH Director's New Innovator Award (DP2 OD002002-01))Brain & Behavior Research FoundationUnited States. Dept. of DefenseNational Science Foundation (U.S.)Alfred P. Sloan FoundationDr. Gerald Burnett and Marjorie BurnettSFN Research Award for Innovation in NeuroscienceMassachusetts Institute of Technology. Media LaboratoryBenesse FoundationWallace H. Coulter Foundatio

    Effective Lagrangian Approach to the Theory of Eta Photoproduction in the N(1535)N^{*}(1535) Region

    Full text link
    We investigate eta photoproduction in the N(1535)N^{*}(1535) resonance region within the effective Lagrangian approach (ELA), wherein leading contributions to the amplitude at the tree level are taken into account. These include the nucleon Born terms and the leading tt-channel vector meson exchanges as the non-resonant pieces. In addition, we consider five resonance contributions in the ss- and uu- channel; besides the dominant N(1535)N^{*}(1535), these are: N(1440),N(1520),N(1650)N^{*}(1440),N^{*}(1520),N^{*}(1650) and N(1710)N^{*}(1710). The amplitudes for the π\pi^\circ and the η\eta photoproduction near threshold have significant differences, even as they share common contributions, such as those of the nucleon Born terms. Among these differences, the contribution to the η\eta photoproduction of the ss-channel excitation of the N(1535)N^{*}(1535) is the most significant. We find the off-shell properties of the spin-3/2 resonances to be important in determining the background contributions. Fitting our effective amplitude to the available data base allows us to extract the quantity χΓηA1/2/ΓT\sqrt{\chi \Gamma_\eta} A_{1/2}/\Gamma_T, characteristic of the photoexcitation of the N(1535)N^{*}(1535) resonance and its decay into the η\eta-nucleon channel, of interest to precise tests of hadron models. At the photon point, we determine it to be (2.2±0.2)×101GeV1(2.2\pm 0.2)\times 10^{-1} GeV^{-1} from the old data base, and (2.2±0.1)×101GeV1(2.2\pm 0.1) \times 10^{-1} GeV^{-1} from a combination of old data base and new Bates data. We obtain the helicity amplitude for N(1535)γpN^{*}(1535)\rightarrow \gamma p to be A1/2=(97±7)×103GeV1/2A_{1/2}=(97\pm 7)\times 10^{-3} GeV^{-1/2} from the old data base, and A1/2=(97±6)×103GeV1/2A_{1/2}=(97\pm 6)\times 10^{-3} GeV^{-1/2} from the combination of the old data base and new Bates data, compared with the results of the analysis of pion photoproduction yielding 74±1174\pm 11, in the same units.Comment: 43 pages, RevTeX, 9 figures available upon request, to appear in Phys. Rev.
    corecore