18 research outputs found

    Improving anti-trypanosomal activity of alkamides isolated from Achillea fragrantissima

    Get PDF
    In previous studies the aerial parts of Achillea fragrantissima were found to have substantial antileishmanial and antitrypanosomal activity. A bioassay-guided fractionation of a dichloromethane extract yielded the isolation of the essential anti-trypanosomal compounds of the plant. Seven sesquiterpene lactones (including Achillolide-A), two flavonoids, chrysosplenol-D and chrysosplenetine, and four alkamides (including pellitorine) were identified. This is the first report for the isolation of the sesquiterpene lactones 3 and 4, chrysosplenetine and the group of alkamides from this plant. Bioevaluation against Trypanosoma brucei brucei TC221 (T.b brucei) using the Alamar-Blue assay revealed the novel alkamide 13 to have an IC50 value of 40.37 μM. A compound library, derived from the alkamide pellitorine (10), was synthesized and bioevaluated in order to find even more active substances. The most active compounds 26 and 27 showed activities in submicromolar concentrations and selectivity indices of 20.1 and 45.6, respectively, towards macrophage cell line J774.1. Toxicity of 26 and 27 was assessed using the greater wax moth Galleria mellonella larvae as an in vivo model. No significant toxicity was observed for the concentration range of 1.25–20 mM.We thank Dr. Ulrich Hildebrandt and Dr. Gerd Vogg, Botanical garden, University of Würzburg, for identifying the seeds and plants of A. fragrantissima. We are grateful to Prof. Dr. August Stich, Medical Mission Institute, University of Würzburg, for providing the respective lab facilities to perform the anti-trypanosomal assay. Many thanks for Dr. Ludwig Hoellein for proof-reading the manuscript. We wish to thank the German Academic Exchange Service (DAAD) for the doctoral scholarship of Joseph Skaf (grant number: 57169181). Srikkanth Balasubramanian was supported by a grant of the German Excellence Initiative to the Graduate School of Life Sciences, University of Würzburg

    Responses of bacterioplankton and phytoplankton to organic carbon and inorganic nutrient addition in two oceanic ecosystems

    Get PDF
    Experiments were carried out on Georges Bank, a productive coastal region in the northwestern sector of the North Atlantic Ocean, and in the oligotrophic western Sargasso Sea to examine the effects of nutrient (inorganic nitrogen and phosphorus) and organic carbon (glucose) additions on bacterial and phytoplankton growth. Four experiments were conducted in each environment. Phytoplankton growth was monitored over a 36 h period by following changes in the concentration of chlorophyll in unfiltered seawater and in seawater prefiltered through 5 μm screening to reduce grazing pressure. Bacterial production was estimated initially and after 24 h using the 3H-thymidine (TdR) method in unfiltered seawater and in 1 μm filtrate. Phytoplankton biomass increased significantly in response to nutrient additions in all but 1 experiment, whereas chlorophyll concentrations remained unchanged or decreased in all of the unamended (control) treatments or treatments supplemented with glucose. Responses of the phytoplankton community were similar for the <5 μm and unfiltered treatments. Bacterial production increased after 24 h in all of the treatments on Georges Bank, and there was little effect of nutrient or glucose addition in unfiltered seawater relative to unamended controls. However, glucose addition to the <1 μm filtrate caused substantial increases in bacterial production relative to controls and N/P-amended treatments in 2 of the experiments from this environment. Glucose had no stimulatory effect (relative to unamended treatments) in 3 of the 4 Sargasso Sea experiments, and only a marginal effect in the fourth. However, the addition of inorganic nitrogen and phosphorus in the latter ecosystem resulted in higher bacterial production (relative to unamended treatments or glucose addition) in 2 of the experiments with unfiltered seawater, and very large increases in 3 of the experiments with 1 μm filtrate. The magnitude of the changes in bacterial production differed greatly between unfiltered and filtered seawater in both ecosystems, indicating an important role for bacterial grazers in controlling bacterial population growth. The results of this study indicate different nutritional restraints on bacterial production in these contrasting environments

    Species data of littoral macroinvertebrate communities of alpine lakes along an elevational gradient (Hohe Tauern National Park, Austria) in July/August 2018

    No full text
    Alpine lakes support unique communities which may respond with great sensitivity to climate change. To understand the drivers of benthic macroinvertebrate community structure, samples were collected in the littoral of 28 lakes within Hohe Tauern National Park, Austria. Sampling took place from early July to early August 2018 between altitudes of 2,000 and 2,700 m a.s.l. The extent of habitat types in the lake littoral was estimated. Habitat types were classified into sediment (maximum grain size of 2 mm), small rocks (up to 20 cm x 15 cm x 5 cm), and large boulders/sheer rock faces. The extent of rocky habitats was calculated as the sum of areas covered by small rocks and boulders/sheer rock faces. A total area of 1 m² was sampled in each lake, using a hand net with a sharp frame (25 cm in width) and 500 µm mesh-size. Mixed samples were taken, covering each habitat type proportional to its extent in the lake (100% corresponding to 1 m²). For habitats covering up to 10% of the lake, a standardized area of 0.1 m² was sampled. In sediment, the uppermost 5 cm of the ground were scooped into the net by sweeping it swiftly through the sediment. When sampling large boulders or rock faces, a metal spatula was used to scrape macroinvertebrates off the surface and collect them in the net. Macroinvertebrates were brushed off small rocks using a toothbrush over water-filled trays. The dimensions of those small rocks were measured, and total surface area was calculated, assuming a suitable geometric form (ellipsoid or cuboid). Samples were presorted in the field and preserved in 4% formalin. After 3-4 weeks, all samples were rinsed in tap water and transferred to 70% ethanol for further storage. Identification was performed using a stereomicroscope (OLYMPUS SZX16, 11.2x-184x) to the lowest taxon possible

    Effect of ciliates on nitrification and nitrifying bacteria in Baltic Sea sediments

    Get PDF
    Nitrification in aquatic sediments is catalyzed by bacteria. While many autecological studies on these bacteria have been published, few have regarded them as part of the benthic microbial food web. Ciliates are important as grazers on bacteria, but also for remineralization of organic matter. We tested the hypothesis that ciliates can affect nitrification. Experiments with Baltic Sea sediments in laboratory flumes, with or without the addition of cultured ciliates, were conducted. We found indication of a higher nitrification potential (ammonium oxidation) in one experiment and increased abundances of nitrifying bacteria in treatments with ciliates. This is likely due to higher nitrogen availability caused by excretion by ciliates and enhanced transport processes in the sediment

    Littoral macroinvertebrate communities and environmental parameters of alpine lakes along an elevational gradient (Hohe Tauern National Park, Austria) in July/August 2018

    No full text
    Alpine lakes support unique communities which may respond with great sensitivity to climate change. To understand the drivers of benthic macroinvertebrate community structure, samples were collected in the littoral of 28 lakes within Hohe Tauern National Park, Austria. Sampling took place from early July to early August 2018 between altitudes of 2,000 and 2,700 m a.s.l. The extent of habitat types in the lake littoral was estimated. Habitat types were classified into sediment (maximum grain size of 2 mm), small rocks (up to 20 cm x 15 cm x 5 cm), and large boulders/sheer rock faces. The extent of rocky habitats was calculated as the sum of areas covered by small rocks and boulders/sheer rock faces. A total area of 1 m² was sampled in each lake, using a hand net with a sharp frame (25 cm in width) and 500 µm mesh-size. Mixed samples were taken, covering each habitat type proportional to its extent in the lake (100% corresponding to 1 m²). For habitats covering up to 10% of the lake, a standardized area of 0.1 m² was sampled. In sediment, the uppermost 5 cm of the ground were scooped into the net by sweeping it swiftly through the sediment. When sampling large boulders or rock faces, a metal spatula was used to scrape macroinvertebrates off the surface and collect them in the net. Macroinvertebrates were brushed off small rocks using a toothbrush over water-filled trays. The dimensions of those small rocks were measured, and total surface area was calculated, assuming a suitable geometric form (ellipsoid or cuboid). Samples were presorted in the field and preserved in 4% formalin. After 3-4 weeks, all samples were rinsed in tap water and transferred to 70% ethanol for further storage. Identification was performed using a stereomicroscope (OLYMPUS SZX16, 11.2x-184x) to the lowest taxon possible. Lake size was determined by aerial photograph in Google Earth Pro. To do so, the outlines of the lakes were traced, and the area of the polygon then calculated. Physical and chemical water parameters were measured with a multi-parameter sonde (EXO2 YSI) (for lakes 1-18 from a boat, otherwise from a rock or by wading into the lake): water temperature (°C), dissolved oxygen (% saturation), conductivity (µS/m), pH, nitrate (mg/l), turbidity (FNU), blue-green algae phycocyanin (µg/l) and chlorophyll-a (µg/l). Maximum depth (m) was measured with a sonar by rowing up to 10 transects across lakes. Maximum depth was not measured for lakes 19-28. Two data loggers had been planted per lake in lakes 1-18 in the previous year and were recovered in 2018. Data loggers measured water temperature at about half a meter depth in six-hour intervals over an entire year. Ice-free days were deduced from available logger data, assuming an ice-cover at water temperatures below 2 °C (daily maximum temperature). Additionally, zoo- and phytoplankton samples were taken from the first 18 lakes. Zooplankton was sampled with vertical tows from the hypolimnion to the surface in deeper lakes, and with oblique tows in shallow lakes using a 29 cm diameter net with a 30 µm mesh size. Samples were then fixed in sucrose-formalin and counted under an Olympus SZX16 stereomicroscope equipped with a 0.7 – 11.5 zoom objective. Phytoplankton samples from lakes 1-18 were taken with a 1.2 L water sampler from the middle of the epilimnion, and when one was present, also from the deep chlorophyll maximum. Samples were fixed with Lugol's iodine and counted in sampling chambers with a Nikon TE2000 inverted microscope using a 20x objective
    corecore