20 research outputs found

    Cultured subventricular zone progenitor cells transduced with neurogenin-2 become mature glutamatergic neurons and integrate into the dentate gyrus.

    Get PDF
    We have previously shown that transplantation of immature DCX+/NeuN+/Prox1+ neurons (found in the neonatal DG), but not undifferentiated neuronal progenitor cells (NPCs) from ventral subventricular zone (SVZ), results in neuronal maturation in vivo within the dentate niche. Here we investigated whether we could enhance the integration of SVZ NPCs by forced expression of the proneural gene Neurogenin 2 (NEUROG2). NPCs cultured from neonatal GFP-transgenic rat SVZ for 7 days in a non-differentiating medium were transduced with a retrovirus encoding NEUROG2 and DsRed or the DsRed reporter gene alone (control). By 3 days post-transduction, the NEUROG2-transduced cells maintained in culture contained mostly immature neurons (91% DCX+; 76% NeuN+), whereas the control virus-transduced cells remained largely undifferentiated (30% DCX+; <1% NeuN+). At 6 weeks following transplantation into the DG of adult male rats, there were no neurons among the transplanted cells treated with the control virus but the majority of the NEUROG2-transduced DsRed+ SVZ cells became mature neurons (92% NeuN+; DCX-negative). Although the NEUROG2-transduced SVZ cells did not express the dentate granule neuron marker Prox1, most of the NEUROG2-transduced SVZ cells (78%) expressed the glutamatergic marker Tbr1, suggesting the acquisition of a glutamatergic phenotype. Moreover, some neurons extended dendrites into the molecular layer, grew axons containing Ankyrin G+ axonal initial segments, and projected into the CA3 region, thus resembling mature DG granule neurons. A proportion of NEUROG2 transduced cells also expressed c-Fos and P-CREB, two markers of neuronal activation. We conclude that NEUROG2-transduction is sufficient to promote neuronal maturation and integration of transplanted NPCs from SVZ into the DG.This is the final version of the article. It was published by PLOS in PLOS One and can be found here: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0031547

    A gene signature derived from the loss of cdkn1a (P21) is associated with CMS4 colorectal cancer

    Get PDF
    The epithelial–mesenchymal transition (EMT) is associated with tumor aggressiveness and increased invasion, migration, metastasis, angiogenesis, and drug resistance. Although the HCT116 p21-/- cell line is well known for its EMT-associated phenotype, with high Vimentin and low E-cadherin protein levels, the gene signature of this rather intermediate EMT-like cell line has not been determined so far. In this work, we present a robust molecular and bioinformatics analysis, to reveal the associated gene expression profile and its correlation with different types of colorectal cancer tumors. We compared the quantitative signature obtained with the NanoString platform with the expression profiles of colorectal cancer (CRC) Consensus Molecular Subtypes (CMS) as identified, and validated the results in a large independent cohort of human tumor samples. The expression signature derived from the p21-/- cells showed consistent and reliable numbers of upregulated and downregulated genes, as evaluated with two machine learning methods against the four CRC subtypes (i.e., CMS1, 2, 3, and 4). High concordance was found between the upregulated gene signature of HCT116 p21-/- cells and the signature of the CMS4 mesenchymal subtype. At the same time, the upregulated gene signature of the native HCT116 cells was similar to that of CMS1. Using a multivariate Cox regression model to analyze the survival data in the CRC tumor cohort, we selected genes that have a predictive risk power (with a significant gene risk incidence score). A set of genes of the mesenchymal signature was proven to be significantly associated with poor survival, specifically in the CMS4 CRC human cohort. We suggest that the gene signature of HCT116 p21-/- cells could be a suitable metric for mechanistic studies regarding the CMS4 signature and its functional consequences in CRC. Moreover, this model could help to discover the molecular mechanisms of intermediate EMT, which is known to be associated with extraordinarily high stemness and drug resistance.R.S.-S. was supported by the Emerging Fields Initiative ‘Cell Cycle in Disease and Regeneration’ (CYDER) of the Friedrich Alexander University (Erlangen-Nürnberg, Germany). This article is partly based upon work from COST Action CA17118 TRANSCOLONCAN, supported by COST (European Cooperation in Science and Technology, www.cost.eu, last accessed 20 December 2021). The JDLR research group is supported by the Spanish Government, Instituto de Salud Carlos III (ISCiii, AES project PI18/00591) co-funded by FEDER/ERDF (European Regional Development Fund)

    Extensive preclinical validation of combined RMC-4550 and LY3214996 supports clinical investigation for KRAS mutant pancreatic cancer

    Get PDF
    Over 90% of pancreatic cancers present mutations in KRAS, one of the most common oncogenic drivers overall. Currently, most KRAS mutant isoforms cannot be targeted directly. Moreover, targeting single RAS downstream effectors induces adaptive resistance mechanisms. We report here on the combined inhibition of SHP2, upstream of KRAS, using the allosteric inhibitor RMC-4550 and of ERK, downstream of KRAS, using LY3214996. This combination shows synergistic anti-cancer activity in vitro, superior disruption of the MAPK pathway, and increased apoptosis induction compared with single-agent treatments. In vivo, we demonstrate good tolerability and efficacy of the combination, with significant tumor regression in multiple pancreatic ductal adenocarcinoma (PDAC) mouse models. Finally, we show evidence that 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) can be used to assess early drug responses in animal models. Based on these results, we will investigate this drug combination in the SHP2 and ERK inhibition in pancreatic cancer (SHERPA; ClinicalTrials.gov: NCT04916236) clinical trial, enrolling patients with KRAS-mutant PDAC.This work was funded by the American Association for Cancer Research, Lustgarten Foundation, and Stand Up to Cancer as a Pancreatic Cancer Collective New Therapies Challenge grant (grant no. SU2C-AACR-PCC-01-18)

    Bcl3 Couples Cancer Stem Cell Enrichment With Pancreatic Cancer Molecular Subtypes

    Get PDF
    [Background & Aims]: The existence of different subtypes of pancreatic ductal adenocarcinoma (PDAC) and their correlation with patient outcome have shifted the emphasis on patient classification for better decision-making algorithms and personalized therapy. The contribution of mechanisms regulating the cancer stem cell (CSC) population in different subtypes remains unknown. [Methods]: Using RNA-seq, we identified B-cell CLL/lymphoma 3 (BCL3), an atypical nf-κb signaling member, as differing in pancreatic CSCs. To determine the biological consequences of BCL3 silencing in vivo and in vitro, we generated bcl3-deficient preclinical mouse models as well as murine cell lines and correlated our findings with human cell lines, PDX models, and 2 independent patient cohorts. We assessed the correlation of bcl3 expression pattern with clinical parameters and subtypes. [Results]: Bcl3 was significantly down-regulated in human CSCs. Recapitulating this phenotype in preclinical mouse models of PDAC via BCL3 genetic knockout enhanced tumor burden, metastasis, epithelial to mesenchymal transition, and reduced overall survival. Fluorescence-activated cell sorting analyses, together with oxygen consumption, sphere formation, and tumorigenicity assays, all indicated that BCL3 loss resulted in CSC compartment expansion promoting cellular dedifferentiation. Overexpression of BCL3 in human PDXs diminished tumor growth by significantly reducing the CSC population and promoting differentiation. Human PDACs with low BCL3 expression correlated with increased metastasis, and BCL3-negative tumors correlated with lower survival and nonclassical subtypes. [Conclusions]: We demonstrate that bcl3 impacts pancreatic carcinogenesis by restraining CSC expansion and by curtailing an aggressive and metastatic tumor burden in PDAC across species. Levels of BCL3 expression are a useful stratification marker for predicting subtype characterization in PDAC, thereby allowing for personalized therapeutic approaches.This work was supported by the Deutsche Forschungsgemeinschaft (grants AL 1174/4-1, AL1174/4-2, and Collaborative Research Center 1321 “Modeling and Targeting Pancreatic Cancer” to Hana Algül; SFB824 Z2 to Katja Steiger), the Deutsche Krebshilfe (grant 111646 to Hana Algül), a Ramon y Cajal Merit Award from the Ministerio de Economía y Competitividad, Spain (to Bruno Sainz Jr), a Coordinated Grant from Fundación Asociación Española Contra el Cáncer (GC16173694BARB to Bruno Sainz Jr), funding from The Fero Foundation (to Bruno Sainz Jr), and a Proyecto de Investigacion de Salud, ISCIII, Spain (no. PI18/00757 to Bruno Sainz Jr). Jiaoyu Ai is supported by the “China Scholarship Council” grant program

    Levels of the Autophagy-Related 5 Protein Affect Progression and Metastasis of Pancreatic Tumors in Mice

    Get PDF
    [Background and Aims]: Cells in pancreatic ductal adenocarcinoma (PDAC) undergo autophagy, but its effects vary with tumor stage and genetic factors. We investigated the consequences of varying levels of the autophagy related 5 (Atg5) protein on pancreatic tumor formation and progression. [Methods]: We generated mice that express oncogenic Kras in primary pancreatic cancer cells and have homozygous disruption of Atg5 (A5;Kras) or heterozygous disruption of Atg5 (A5+/–;Kras), and compared them with mice with only oncogenic Kras (controls). Pancreata were analyzed by histology and immunohistochemistry. Primary tumor cells were isolated and used to perform transcriptome, metabolome, intracellular calcium, extracellular cathepsin activity, and cell migration and invasion analyses. The cells were injected into wild-type littermates, and orthotopic tumor growth and metastasis were monitored. Atg5 was knocked down in pancreatic cancer cell lines using small hairpin RNAs; cell migration and invasion were measured, and cells were injected into wild-type littermates. PDAC samples were obtained from independent cohorts of patients and protein levels were measured on immunoblot and immunohistochemistry; we tested the correlation of protein levels with metastasis and patient survival times. [Results]: A5+/–;Kras mice, with reduced Atg5 levels, developed more tumors and metastases, than control mice, whereas A5;Kras mice did not develop any tumors. Cultured A5+/–;Kras primary tumor cells were resistant to induction and inhibition of autophagy, had altered mitochondrial morphology, compromised mitochondrial function, changes in intracellular Ca2+ oscillations, and increased activity of extracellular cathepsin L and D. The tumors that formed in A5+/–;Kras mice contained greater numbers of type 2 macrophages than control mice, and primary A5+/–;Kras tumor cells had up-regulated expression of cytokines that regulate macrophage chemoattraction and differentiation into M2 macrophage. Knockdown of Atg5 in pancreatic cancer cell lines increased their migratory and invasive capabilities, and formation of metastases following injection into mice. In human PDAC samples, lower levels of ATG5 associated with tumor metastasis and shorter survival time. [Conclusions]: In mice that express oncogenic Kras in pancreatic cells, heterozygous disruption of Atg5 and reduced protein levels promotes tumor development, whereas homozygous disruption of Atg5 blocks tumorigenesis. Therapeutic strategies to alter autophagy in PDAC should consider the effects of ATG5 levels to avoid the expansion of resistant and highly aggressive cells.This study was supported in part by the Mildred-Scheel-Professur der Deutschen Krebshilfe 111464, DFG AL 1174/6-1 to H.A., DFG DI 2299/1-1 to K.N.D., DFG SFB1321 (S01) to K.S. and W.W., and the German Federal Ministry of Education and Research to the German Center for Diabetes Research (DZD e.V.) to J.A

    <i>NEUROG2</i>-transduced DG cells express Prox1.

    No full text
    <p>Example of GFP+ <i>NEUROG2</i>-transduced DG cells at 6 weeks post-transplantation (A), with a transduced dsRed+ DG cell positive for NeuN (A′-A′″) and Prox1 (B). Note that the dsRed+ neuron is correctly located in the granule layer of the DG and extends dendrites into the molecular layer, thus morphologically resembling the endogenous DG granule neurons.</p

    Sox2-Mediated Conversion of NG2 Glia into Induced Neurons in the Injured Adult Cerebral Cortex

    Get PDF
    The adult cerebral cortex lacks the capacity to replace degenerated neurons following traumatic injury. Conversion of nonneuronal cells into induced neurons has been proposed as an innovative strategy toward brain repair. Here, we show that retrovirus-mediated expression of the transcription factors Sox2 and Ascl1, but strikingly also Sox2 alone, can induce the conversion of genetically fate-mapped NG2 glia into induced doublecortin (DCX)+ neurons in the adult mouse cerebral cortex following stab wound injury in vivo. In contrast, lentiviral expression of Sox2 in the unlesioned cortex failed to convert oligodendroglial and astroglial cells into DCX+ cells. Neurons induced following injury mature morphologically and some acquire NeuN while losing DCX. Patch-clamp recording of slices containing Sox2- and/or Ascl1-transduced cells revealed that a substantial fraction of these cells receive synaptic inputs from neurons neighboring the injury site. Thus, NG2 glia represent a potential target for reprogramming strategies toward cortical repair

    <i>NEUROG2</i>-transduced SVZ cells show improved neuronal yield in vivo.

    No full text
    <p>On day 3 post-transduction, virus-transduced cells were transplanted into the DG of adult rat and brain tissues were analysed 6 weeks post-transplantation. Example of GFP+ <i>NEUROG2</i>-transduced SVZ cells at 6 weeks post-transplantation, highlighting GFP+ cells positive for DsRed (A-A′″). Note that some grafted cells had cell bodies misplaced in the molecular layer (ML) instead of the granule layer (GL). The majority of <i>NEUROG2</i>-transduced SVZ cells were positive for NeuN (B-B′″) and Tbr1 (C-C′″) though negative for Prox1 (D-D′″), whereas the control virus-transduced cells were mostly positive for Sox2 (F-F′″). Percentages of virus-transduced SVZ cells expressing different markers at 6 weeks (mean ± SEM, n = 4), *p<0.05 (G). Scale bar = 50 µm.</p

    <i>NEUROG2</i>-transduced SVZ cells extend dendrites into the molecular layer and innervate the target CA3 in vivo.

    No full text
    <p>Similar to endogenous DG granule neurons, the <i>NEUROG2</i>-transduced SVZ cells extended elaborate dendrites into the molecular layer (A-A′), which were positive for Map2 (B-B′″). The <i>NEUROG2</i>-transduced SVZ cells also expressed the axonal initial segment marker Ankyrin G (C-C′″) and displayed DsRed+ processes in the CA3 (Regions 1–3) (D-D′″). Some of these processes were positive for the neuronal marker βIIItubulin (E-E′″), suggesting the ability of the <i>NEUROG2</i>-transduced SVZ neurons to innervate the CA3. Scale bar = 20 µm.</p

    <i>NEUROG2</i>-tranduction increases neuronal differentiation of cultured SVZ and DG NPCs <i>in vitro</i>.

    No full text
    <p>Cells from ventral SVZ and DG of neonatal GFP rats expanded for 7 days as neurospheres in mitogen-containing medium were plated as monolayers and transduced with the <i>NEUROG2</i> virus or the control virus. At 3 days post-transduction, the majority of <i>NEUROG2</i>-transduced SVZ cells became young neurons, expressing NeuN (A-A′″) and DCX (B-B′″). <i>NEUROG2</i>-transduced SVZ cells did not express the DG granule cell marker Prox1 (C-C′″), in contrast to the <i>NEUROG2</i>-transduced DG cells (D-D′″). <i>NEUROG2</i>-transduced SVZ cells also expressed the T-box transcription factor Tbr1 (E-E′″) and later (28 days) the pre-synaptic vesicular glutamate transporter 1 (vGluT1) (F-F′″1′″), suggesting a shift from their normal GABAergic fate towards the glutamatergic neuronal fate. Percentages of virus-transduced SVZ cells (∼15% of total) (G) and DG cells (∼6% of total) (H) expressing different markers (mean ± SEM, n = 3), *p<0.05. Scale bar = 20 µm.</p
    corecore