501 research outputs found

    « Suivre une règle » chez Wittgenstein : un paradoxe sceptique pour Saul Kripke

    Get PDF
    Dans cet article, nous considérons un paradoxe sceptique que Saul Kripke (1982a) a attribué à Wittgenstein. Nous critiquons la solution directe proposée par Colin McGinn (1984), qui a recours à la théorie causale de la référence, et nous montrons pourquoi cette solution n'est pas satisfaisante. La solution sceptique que Kripke prête à Wittgenstein est ensuite discutée à la lumière de nos considérations sur la théorie causale, ce qui nous amène à constater qu'elle est aussi insuffisante. Nous concluons en montrant que nous ne sommes pas d'emblée contraints d'accepter le paradoxe.We consider a sceptical paradox which Saul Kripke (1982a) has attributed to Wittgenstein. We criticize the direct solution proposed by Colin McGinn, which resorts to the causal theory of reference, and we show why this solution in not satisfying. The sceptical solution which Kripke attributes to Wittgenstein is then discussed in the light of our considerations on the causal theory ; this leads us to ascertain that it is also insufficient. We conclude by showing that we don't really need to accept the paradox as it is first presented

    The Zero Base Budgeting

    Get PDF

    Making Choices between Rules or between Actions

    Get PDF
    A new study by Klaes et al. in this issue of Neuron shows that the brain can simultaneously apply two rules to the same sensory information in order to specify two parallel potential action goals, which then compete for execution in the sensorimotor system

    Dorsal premotor cortex is involved in switching motor plans

    Get PDF
    Previous studies have shown that neural activity in primate dorsal premotor cortex (PMd) can simultaneously represent multiple potential movement plans, and that activity related to these movement options is modulated by their relative subjective desirability. These findings support the hypothesis that decisions about actions are made through a competition within the same circuits that guide the actions themselves. This hypothesis further predicts that the very same cells that guide initial decisions will continue to update their activities if an animal changes its mind. For example, if a previously selected movement option suddenly becomes unavailable, the correction will be performed by the same cells that selected the initial movement, as opposed to some different group of cells responsible for online guidance. We tested this prediction by recording neural activity in the PMd of a monkey performing an instructed-delay reach selection task. In the task, two targets were simultaneously presented and their border styles indicated whether each would be worth 1, 2, or 3 juice drops. In a random subset of trials (FREE), the monkey was allowed a choice while in the remaining trials (FORCED) one of the targets disappeared at the time of the GO signal. In FORCED-LOW trials the monkey was forced to move to the less valuable target and started moving either toward the new target (Direct) or toward the target that vanished and then curved to reach the remaining one (Curved). Prior to the GO signal, PMd activity clearly reflected the monkey's subjective preference, predicting his choices in FREE trials even with equally valued options. In FORCED-LOW trials, PMd activity reflected the switch of the monkey's plan as early as 100 ms after the GO signal, well before movement onset (MO). This confirms that the activity is not related to feedback from the movement itself, and suggests that PMd continues to participate in action selection even when the animal changes its mind on-line. These findings were reproduced by a computational model suggesting that switches between action plans can be explained by the same competition process responsible for initial decisions

    FIFTEEN YEARS OF OBSERVATIONS ON THE DWARF GENE IN THE DOMESTIC FOWL

    Get PDF

    Repeatable use assessment of silicon carbide as permanent susceptor bed in ex situ microwave remediation of petroleum-impacted soils

    Get PDF
    Efficiency of microwave-enabled ex situ soil remediation can be improved by dielectric susceptors. Cost, and environmental burden of these susceptors can be minimized if they are used repeatedly in a permanent bed set-up. In this study, carbon nanofibers, activated carbon, magnetite, and silicon carbide were tested at the lab scale for repeated use in permanent microwave-induced thermal soil remediation. Despite their superior ability to convert microwaves into heat, carbon nanofibers experienced electrokinesis and activated carbon partially combusted in the microwave cavity, which complicates their pragmatic use in remediation applications. Magnetite was also able to convert microwaves into heat effectively and it was relatively more stable; however, repeated heating/and cooling cycles changed its physicochemical properties, which was attributed to oxidation of iron oxides at the air-soil interface. Silicon carbide, on the other hand, was an efficient heating agent and was stable during repeatable heating and cooling cycles. Through 25 heating/cooling cycles, an average peak temperature of 329 ± 55°C was achieved for a 29 cm3 sample and analysis of dielectric properties after every 10th and 25th cycle indicated that there were no significant losses in thermal conductivity or permittivity of the material. Subsequent remediation experiments with silicon carbide demonstrated that between 89 and 97% of the total petroleum hydrocarbons were removed from soil including a marked fraction of heavy hydrocarbons when 20.2 kJ g−1 of microwave energy was introduced. In addition, post-treatment experiments demonstrated that soil conditions were capable of supporting seed germination indicating that some conditions of soil were recovered after microwave remediation

    Effects of nasal continuous positive airway pressure on nutritive swallowing in lambs

    Get PDF
    Current knowledge suggests that, to be successful, oral feeding in preterm infants should be initiated as soon as possible, often at an age where immature respiration still requires ventilatory support in the form of nasal continuous positive airway pressure (nCPAP). While some neonatologist teams claim great success with initiation of oral feeding in immature infants with nCPAP, others strictly wait for this ventilatory support to be no longer necessary before any attempt at oral feeding, fearing laryngeal penetration and tracheal aspiration. Therefore, the aim of the present study was to provide a first assessment of the effect of various levels of nCPAP on bottle-feeding in a neonatal ovine model, including feeding safety, feeding efficiency, and nutritive swallowing-breathing coordination. Eight lambs born at term were surgically instrumented 48 h after birth to collect recordings of electrical activity of laryngeal constrictor muscle, electrocardiography, and arterial blood gases. Two days after surgery, lambs were bottle-fed under five randomized nCPAP conditions, including without any nCPAP or nasal mask and nCPAP of 0, 4, 7, and 10 cmH(2)O. Results revealed that application of nCPAP in the full-term lamb had no deleterious effect on feeding safety and efficiency or on nutritive swallowing-breathing coordination. The present study provides a first and unique insight on the effect of nCPAP on oral feeding, demonstrating its safety in newborn lambs born at term. These results open the way for further research in preterm lambs to better mimic the problems encountered in neonatology
    corecore