30 research outputs found

    Design and Sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G)

    Full text link
    This article presents the design of the Radio Neutrino Observatory Greenland (RNO-G) and discusses its scientific prospects. Using an array of radio sensors, RNO-G seeks to measure neutrinos above 10 PeV by exploiting the Askaryan effect in neutrino-induced cascades in ice. We discuss the experimental considerations that drive the design of RNO-G, present first measurements of the hardware that is to be deployed and discuss the projected sensitivity of the instrument. RNO-G will be the first production-scale radio detector for in-ice neutrino signals.Comment: 51 pages, 27 figures, prepared for JINS

    Cidofovir inhibits polyomavirus BK replication in human renal tubular cells downstream of viral early gene expression

    No full text
    The human polyomavirus BK (BKV) causes nephropathy and hemorrhagic cystitis in kidney and bone marrow transplant patients, respectively. The anti-viral cidofovir (CDV) has been used in small case series but the effects on BKV replication are unclear, since polyomaviruses do not encode viral DNA polymerases. We investigated the effects of CDV on BKV(Dunlop) replication in primary human renal proximal tubule epithelial cells (RPTECs). CDV inhibited the generation of viral progeny in a dose-dependent manner yielding a 90% reduction at 40 microg/mL. Early steps such as receptor binding and entry seemed unaffected. Initial large T-antigen transcription and expression were also unaffected, but subsequent intra-cellular BKV DNA replication was reduced by <90%. Late viral mRNA and corresponding protein levels were also 90% reduced. In uninfected RPTECs, CDV 40 microg/mL reduced cellular DNA replication and metabolic activity by 7% and 11% in BrdU and WST-1 assays, respectively. BKV infection increased DNA replication to 142% and metabolic activity to 116%, respectively, which were reduced by CDV 40 microg/mL to levels of uninfected untreated RPTECs. Our results show that CDV inhibits BKV DNA replication downstream of large T-antigen expression and involves significant host cell toxicity. This should be considered in current treatment and drug development

    Risk of vascular injury when screw drilling for tibial tuberosity transfer

    No full text
    Purpose: During tibial tubercle transfer, popliteal vessels are at risk from drills and screws. The risk is around 0.11%, as described in the literature. We reviewed knee injected CT scan for analysis of the location of arteries, identified landmarks allowing minimizing risks, and defined a safe zone. Material and method: Distances between the posterior cortex and arteries were measured on CT scans from 30 adults (60 knees) at three levels (proximal part of the tibial tuberosity, 20 mm and 40 mm distally). Data were used to create a “risk map” with different angular sectors where the frequency of the presence of arteries was analyzed in each area. We also analyzed the position of 68 screws of 47 patients who underwent a medial tibial tuberosity transfer. Results: The nearest distance between artery and the posterior tibial cortex was found at the level corresponding to the top of the tuberosity with less than 1 mm, while the largest distance was found at the distal level. We were able to define a safe zone for drilling through the posterior tibial cortex which allows a safe fixation for the screws. This zone corresponds to the medial third of the posterior cortex. When the safe zone is not respected, screws that overtake the posterior cortex may be close to arteries as observed for 37 of the 68 screws analyzed. Conclusion: We described new landmarks and recommendations to avoid this complication during tibial tuberosity transfer.SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore