441 research outputs found
A Tensor Train Continuous Time Solver for Quantum Impurity Models
The simulation of strongly correlated quantum impurity models is a
significant challenge in modern condensed matter physics that has multiple
important applications. Thus far, the most successful methods for approaching
this challenge involve Monte Carlo techniques that accurately and reliably
sample perturbative expansions to any order. However, the cost of obtaining
high precision through these methods is high. Recently, tensor train
decomposition techniques have been developed as an alternative to Monte Carlo
integration. In this study, we apply these techniques to the single-impurity
Anderson model at equilibrium by calculating the systematic expansion in power
of the hybridization of the impurity with the bath. We demonstrate the
performance of the method in a paradigmatic application, examining the
first-order phase transition on the infinite dimensional Bethe lattice, which
can be mapped to an impurity model through dynamical mean field theory. Our
results indicate that using tensor train decomposition schemes allows the
calculation of finite-temperature Green's functions and thermodynamic
observables with unprecedented accuracy. The methodology holds promise for
future applications to frustrated multi-orbital systems, using a combination of
partially summed series with other techniques pioneered in diagrammatic and
continuous-time quantum Monte Carlo
Motor function in Parkinson's disease and supranuclear palsy: simultaneous factor analysis of a clinical scale in several populations
BACKGROUND: In order to better understand the similarities and differences in the motor behaviour of different groups of patients, their scores on the Motor Examination section of the Unified Parkinson's Disease Rating Scale (UPDRS) were analysed simultaneously. The three groups consisted, respectively, of patients with Parkinson's disease (PD) on medication, patients with Parkinson's disease withdrawn from anti-parkinsonian medication for at least 12 hours, and patients diagnosed with a specific Parkinsonism syndrome: Progressive Supranuclear Palsy (PSP). METHODS: A total of 669 consecutively sampled patients from three separate hospital-based clinics participated (294 PD on medication; 200 PD off medication: 175 PSP). The Motor Examination section of the UPDRS was administered by neurologists at the three participating clinics. The patient scores on each item were recorded. To assess similarities and differences among the components of the UPDRS in these samples, we performed simultaneous or multigroup factor analysis on the covariance matrices of the three groups. In addition, it was investigated whether a single model for the Motor Examination section of the UPDRS could be developed which would be valid for all three groups at the same time. RESULTS: A single six-dimensional factor solution was found that fitted all groups, although this was not straightforward due to differences between the tremor-at-rest variables. The factors were identified as Tremor-at-rest, Postural Tremor, Axial Dysfunctioning, Rigidity, Left Bradykinesia and Right Bradykinesia. The analysis also pointed to a somewhat lower lateralization in bradykinesia for PSP patients. The groups differed in intensity of motor impairment, especially with respect to Tremor-at-Rest, but the overall relationships between the variables were shared by the three groups. In addition, apart from the common factor structure evidence of differences in body part-specific and motor-specific variances was found. CONCLUSION: From a clinical point of view, the analyses showed that using the Motor Examination section of the UPDRS is also appropriate for patients with PSP, because the correlational structure of the items is directly comparable to that of Parkinson's patients. Methodologically, the analysis of all groups together showed that it is possible to evaluate similarities and differences between factor structures in great detail
Solonamide B Inhibits Quorum Sensing and Reduces Staphylococcus aureus Mediated Killing of Human Neutrophils
Methicillin-resistant Staphylococcus aureus (MRSA) continues to be a serious human pathogen, and particularly the spread of community associated (CA)-MRSA strains such as USA300 is a concern, as these strains can cause severe infections in otherwise healthy adults. Recently, we reported that a cyclodepsipeptide termed Solonamide B isolated from the marine bacterium, Photobacterium halotolerans strongly reduces expression of RNAIII, the effector molecule of the agr quorum sensing system. Here we show that Solonamide B interferes with the binding of S. aureus autoinducing peptides (AIPs) to sensor histidine kinase, AgrC, of the agr two-component system. The hypervirulence of USA300 has been linked to increased expression of central virulence factors like α-hemolysin and the phenol soluble modulins (PSMs). Importantly, in strain USA300 Solonamide B dramatically reduced the activity of α-hemolysin and the transcription of psma encoding PSMs with an 80% reduction in toxicity of supernatants towards human neutrophils and rabbit erythrocytes. To our knowledge this is the first report of a compound produced naturally by a Gram-negative marine bacterium that interferes with agr and affects both RNAIII and AgrA controlled virulence gene expression in S. aureus
Biomedical and therapeutic applications of biosurfactants
During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases and as therapeutic agents due to their antibacterial, antifungal and antiviral activities. Furthermore, their role as anti-adhesive agents against several pathogens illustrate their utility as suitable anti-adhesive coating agents for medical insertional materials leading to a reduction of a large number of hospital infections without the use of synthetic drugs and chemicals. Biomedical and therapeutic perspectives of biosurfactants applications are presented and discussed in this chapter
Regulation of Hemolysin Expression and Virulence of Staphylococcus aureus by a Serine/Threonine Kinase and Phosphatase
Exotoxins, including the hemolysins known as the alpha (α) and beta (β) toxins, play an important role in the pathogenesis of Staphylococcus aureus infections. A random transposon library was screened for S. aureus mutants exhibiting altered hemolysin expression compared to wild type. Transposon insertions in 72 genes resulting in increased or decreased hemolysin expression were identified. Mutations inactivating a putative cyclic di-GMP synthetase and a serine/threonine phosphatase (Stp1) were found to reduce hemolysin expression, and mutations in genes encoding a two component regulator PhoR, LysR family transcriptional regulator, purine biosynthetic enzymes and a serine/threonine kinase (Stk1) increased expression. Transcription of the hla gene encoding α toxin was decreased in a Δstp1 mutant strain and increased in a Δstk1 strain. Microarray analysis of a Δstk1 mutant revealed increased transcription of additional exotoxins. A Δstp1 strain is severely attenuated for virulence in mice and elicits less inflammation and IL-6 production than the Δstk1 strain. In vivo phosphopeptide enrichment and mass spectrometric analysis revealed that threonine phosphorylated peptides corresponding to Stk1, DNA binding histone like protein (HU), serine-aspartate rich fibrinogen/bone sialoprotein binding protein (SdrE) and a hypothetical protein (NWMN_1123) were present in the wild type and not in the Δstk1 mutant. Collectively, these studies suggest that Stk1 mediated phosphorylation of HU, SrdE and NWMN_1123 affects S. aureus gene expression and virulence
Pneumococcal Capsular Polysaccharide Structure Predicts Serotype Prevalence
There are 91 known capsular serotypes of Streptococcus pneumoniae. The nasopharyngeal carriage prevalence of particular serotypes is relatively stable worldwide, but the host and bacterial factors that maintain these patterns are poorly understood. Given the possibility of serotype replacement following vaccination against seven clinically important serotypes, it is increasingly important to understand these factors. We hypothesized that the biochemical structure of the capsular polysaccharides could influence the degree of encapsulation of different serotypes, their susceptibility to killing by neutrophils, and ultimately their success during nasopharyngeal carriage. We sought to measure biological differences among capsular serotypes that may account for epidemiological patterns. Using an in vitro assay with both isogenic capsule-switch variants and clinical carriage isolates, we found an association between increased carriage prevalence and resistance to non-opsonic neutrophil-mediated killing, and serotypes that were resistant to neutrophil-mediated killing tended to be more heavily encapsulated, as determined by FITC-dextran exclusion. Next, we identified a link between polysaccharide structure and carriage prevalence. Significantly, non-vaccine serotypes that have become common in vaccinated populations tend to be those with fewer carbons per repeat unit and low energy expended per repeat unit, suggesting a novel biological principle to explain patterns of serotype replacement. More prevalent serotypes are more heavily encapsulated and more resistant to neutrophil-mediated killing, and these phenotypes are associated with the structure of the capsular polysaccharide, suggesting a direct relationship between polysaccharide biochemistry and the success of a serotype during nasopharyngeal carriage and potentially providing a method for predicting serotype replacement
Biomarker candidates of neurodegeneration in Parkinson’s disease for the evaluation of disease-modifying therapeutics
Reliable biomarkers that can be used for early diagnosis and tracking disease progression are the cornerstone of the development of disease-modifying treatments for Parkinson’s disease (PD). The German Society of Experimental and Clinical Neurotherapeutics (GESENT) has convened a Working Group to review the current status of proposed biomarkers of neurodegeneration according to the following criteria and to develop a consensus statement on biomarker candidates for evaluation of disease-modifying therapeutics in PD. The criteria proposed are that the biomarker should be linked to fundamental features of PD neuropathology and mechanisms underlying neurodegeneration in PD, should be correlated to disease progression assessed by clinical rating scales, should monitor the actual disease status, should be pre-clinically validated, and confirmed by at least two independent studies conducted by qualified investigators with the results published in peer-reviewed journals. To date, available data have not yet revealed one reliable biomarker to detect early neurodegeneration in PD and to detect and monitor effects of drug candidates on the disease process, but some promising biomarker candidates, such as antibodies against neuromelanin, pathological forms of α-synuclein, DJ-1, and patterns of gene expression, metabolomic and protein profiling exist. Almost all of the biomarker candidates were not investigated in relation to effects of treatment, validated in experimental models of PD and confirmed in independent studies
- …